#[repr(C, align(8))]pub struct AtomicU64 { /* private fields */ }
component
only.Expand description
An integer type which can be safely shared between threads.
This type has the same
size and bit validity
as the underlying integer type, u64
.
However, the alignment of this type is always equal to its size, even on targets where u64
has a lesser alignment.
For more about the differences between atomic types and non-atomic types as well as information about the portability of this type, please see the module-level documentation.
Note: This type is only available on platforms that support
atomic loads and stores of u64
.
Implementations§
Source§impl AtomicU64
impl AtomicU64
1.34.0 (const: 1.34.0) · Sourcepub const fn new(v: u64) -> AtomicU64
pub const fn new(v: u64) -> AtomicU64
Creates a new atomic integer.
§Examples
use std::sync::atomic::AtomicU64;
let atomic_forty_two = AtomicU64::new(42);
1.75.0 (const: 1.84.0) · Sourcepub const unsafe fn from_ptr<'a>(ptr: *mut u64) -> &'a AtomicU64
pub const unsafe fn from_ptr<'a>(ptr: *mut u64) -> &'a AtomicU64
Creates a new reference to an atomic integer from a pointer.
§Examples
use std::sync::atomic::{self, AtomicU64};
// Get a pointer to an allocated value
let ptr: *mut u64 = Box::into_raw(Box::new(0));
assert!(ptr.cast::<AtomicU64>().is_aligned());
{
// Create an atomic view of the allocated value
let atomic = unsafe {AtomicU64::from_ptr(ptr) };
// Use `atomic` for atomic operations, possibly share it with other threads
atomic.store(1, atomic::Ordering::Relaxed);
}
// It's ok to non-atomically access the value behind `ptr`,
// since the reference to the atomic ended its lifetime in the block above
assert_eq!(unsafe { *ptr }, 1);
// Deallocate the value
unsafe { drop(Box::from_raw(ptr)) }
§Safety
ptr
must be aligned toalign_of::<AtomicU64>()
(note that on some platforms this can be bigger thanalign_of::<u64>()
).ptr
must be valid for both reads and writes for the whole lifetime'a
.- You must adhere to the Memory model for atomic accesses. In particular, it is not allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes, without synchronization.
1.34.0 · Sourcepub fn get_mut(&mut self) -> &mut u64
pub fn get_mut(&mut self) -> &mut u64
Returns a mutable reference to the underlying integer.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let mut some_var = AtomicU64::new(10);
assert_eq!(*some_var.get_mut(), 10);
*some_var.get_mut() = 5;
assert_eq!(some_var.load(Ordering::SeqCst), 5);
Sourcepub fn from_mut(v: &mut u64) -> &mut AtomicU64
🔬This is a nightly-only experimental API. (atomic_from_mut
)Available on target_has_atomic_equal_alignment="64"
only.
pub fn from_mut(v: &mut u64) -> &mut AtomicU64
atomic_from_mut
)target_has_atomic_equal_alignment="64"
only.Get atomic access to a &mut u64
.
Note: This function is only available on targets where u64
has an alignment of 8 bytes.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicU64, Ordering};
let mut some_int = 123;
let a = AtomicU64::from_mut(&mut some_int);
a.store(100, Ordering::Relaxed);
assert_eq!(some_int, 100);
Sourcepub fn get_mut_slice(this: &mut [AtomicU64]) -> &mut [u64]
🔬This is a nightly-only experimental API. (atomic_from_mut
)
pub fn get_mut_slice(this: &mut [AtomicU64]) -> &mut [u64]
atomic_from_mut
)Get non-atomic access to a &mut [AtomicU64]
slice
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicU64, Ordering};
let mut some_ints = [const { AtomicU64::new(0) }; 10];
let view: &mut [u64] = AtomicU64::get_mut_slice(&mut some_ints);
assert_eq!(view, [0; 10]);
view
.iter_mut()
.enumerate()
.for_each(|(idx, int)| *int = idx as _);
std::thread::scope(|s| {
some_ints
.iter()
.enumerate()
.for_each(|(idx, int)| {
s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
})
});
Sourcepub fn from_mut_slice(v: &mut [u64]) -> &mut [AtomicU64]
🔬This is a nightly-only experimental API. (atomic_from_mut
)Available on target_has_atomic_equal_alignment="64"
only.
pub fn from_mut_slice(v: &mut [u64]) -> &mut [AtomicU64]
atomic_from_mut
)target_has_atomic_equal_alignment="64"
only.Get atomic access to a &mut [u64]
slice.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicU64, Ordering};
let mut some_ints = [0; 10];
let a = &*AtomicU64::from_mut_slice(&mut some_ints);
std::thread::scope(|s| {
for i in 0..a.len() {
s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
}
});
for (i, n) in some_ints.into_iter().enumerate() {
assert_eq!(i, n as usize);
}
1.34.0 (const: 1.79.0) · Sourcepub const fn into_inner(self) -> u64
pub const fn into_inner(self) -> u64
Consumes the atomic and returns the contained value.
This is safe because passing self
by value guarantees that no other threads are
concurrently accessing the atomic data.
§Examples
use std::sync::atomic::AtomicU64;
let some_var = AtomicU64::new(5);
assert_eq!(some_var.into_inner(), 5);
1.34.0 · Sourcepub fn load(&self, order: Ordering) -> u64
pub fn load(&self, order: Ordering) -> u64
Loads a value from the atomic integer.
load
takes an Ordering
argument which describes the memory ordering of this operation.
Possible values are SeqCst
, Acquire
and Relaxed
.
§Panics
Panics if order
is Release
or AcqRel
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let some_var = AtomicU64::new(5);
assert_eq!(some_var.load(Ordering::Relaxed), 5);
1.34.0 · Sourcepub fn store(&self, val: u64, order: Ordering)
pub fn store(&self, val: u64, order: Ordering)
Stores a value into the atomic integer.
store
takes an Ordering
argument which describes the memory ordering of this operation.
Possible values are SeqCst
, Release
and Relaxed
.
§Panics
Panics if order
is Acquire
or AcqRel
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let some_var = AtomicU64::new(5);
some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Sourcepub fn swap(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn swap(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Stores a value into the atomic integer, returning the previous value.
swap
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let some_var = AtomicU64::new(5);
assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
1.34.0 · Sourcepub fn compare_and_swap(&self, current: u64, new: u64, order: Ordering) -> u64
👎Deprecated since 1.50.0: Use compare_exchange
or compare_exchange_weak
insteadAvailable on target_has_atomic="64"
only.
pub fn compare_and_swap(&self, current: u64, new: u64, order: Ordering) -> u64
compare_exchange
or compare_exchange_weak
insteadtarget_has_atomic="64"
only.Stores a value into the atomic integer if the current value is the same as
the current
value.
The return value is always the previous value. If it is equal to current
, then the
value was updated.
compare_and_swap
also takes an Ordering
argument which describes the memory
ordering of this operation. Notice that even when using AcqRel
, the operation
might fail and hence just perform an Acquire
load, but not have Release
semantics.
Using Acquire
makes the store part of this operation Relaxed
if it
happens, and using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Migrating to compare_exchange
and compare_exchange_weak
compare_and_swap
is equivalent to compare_exchange
with the following mapping for
memory orderings:
Original | Success | Failure |
---|---|---|
Relaxed | Relaxed | Relaxed |
Acquire | Acquire | Acquire |
Release | Release | Relaxed |
AcqRel | AcqRel | Acquire |
SeqCst | SeqCst | SeqCst |
compare_exchange_weak
is allowed to fail spuriously even when the comparison succeeds,
which allows the compiler to generate better assembly code when the compare and swap
is used in a loop.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let some_var = AtomicU64::new(5);
assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Sourcepub fn compare_exchange(
&self,
current: u64,
new: u64,
success: Ordering,
failure: Ordering,
) -> Result<u64, u64>
Available on target_has_atomic="64"
only.
pub fn compare_exchange( &self, current: u64, new: u64, success: Ordering, failure: Ordering, ) -> Result<u64, u64>
target_has_atomic="64"
only.Stores a value into the atomic integer if the current value is the same as
the current
value.
The return value is a result indicating whether the new value was written and
containing the previous value. On success this value is guaranteed to be equal to
current
.
compare_exchange
takes two Ordering
arguments to describe the memory
ordering of this operation. success
describes the required ordering for the
read-modify-write operation that takes place if the comparison with current
succeeds.
failure
describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire
as success ordering makes the store part
of this operation Relaxed
, and using Release
makes the successful load
Relaxed
. The failure ordering can only be SeqCst
, Acquire
or Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let some_var = AtomicU64::new(5);
assert_eq!(some_var.compare_exchange(5, 10,
Ordering::Acquire,
Ordering::Relaxed),
Ok(5));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_exchange(6, 12,
Ordering::SeqCst,
Ordering::Acquire),
Err(10));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Sourcepub fn compare_exchange_weak(
&self,
current: u64,
new: u64,
success: Ordering,
failure: Ordering,
) -> Result<u64, u64>
Available on target_has_atomic="64"
only.
pub fn compare_exchange_weak( &self, current: u64, new: u64, success: Ordering, failure: Ordering, ) -> Result<u64, u64>
target_has_atomic="64"
only.Stores a value into the atomic integer if the current value is the same as
the current
value.
Unlike AtomicU64::compare_exchange
,
this function is allowed to spuriously fail even
when the comparison succeeds, which can result in more efficient code on some
platforms. The return value is a result indicating whether the new value was
written and containing the previous value.
compare_exchange_weak
takes two Ordering
arguments to describe the memory
ordering of this operation. success
describes the required ordering for the
read-modify-write operation that takes place if the comparison with current
succeeds.
failure
describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire
as success ordering makes the store part
of this operation Relaxed
, and using Release
makes the successful load
Relaxed
. The failure ordering can only be SeqCst
, Acquire
or Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let val = AtomicU64::new(4);
let mut old = val.load(Ordering::Relaxed);
loop {
let new = old * 2;
match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
Ok(_) => break,
Err(x) => old = x,
}
}
1.34.0 · Sourcepub fn fetch_add(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_add(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Adds to the current value, returning the previous value.
This operation wraps around on overflow.
fetch_add
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(0);
assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
assert_eq!(foo.load(Ordering::SeqCst), 10);
1.34.0 · Sourcepub fn fetch_sub(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_sub(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Subtracts from the current value, returning the previous value.
This operation wraps around on overflow.
fetch_sub
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(20);
assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
assert_eq!(foo.load(Ordering::SeqCst), 10);
1.34.0 · Sourcepub fn fetch_and(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_and(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Bitwise “and” with the current value.
Performs a bitwise “and” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_and
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(0b101101);
assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
1.34.0 · Sourcepub fn fetch_nand(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_nand(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Bitwise “nand” with the current value.
Performs a bitwise “nand” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_nand
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(0x13);
assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
1.34.0 · Sourcepub fn fetch_or(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_or(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Bitwise “or” with the current value.
Performs a bitwise “or” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_or
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(0b101101);
assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
1.34.0 · Sourcepub fn fetch_xor(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_xor(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Bitwise “xor” with the current value.
Performs a bitwise “xor” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_xor
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(0b101101);
assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
1.45.0 · Sourcepub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F,
) -> Result<u64, u64>
Available on target_has_atomic="64"
only.
pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<u64, u64>
target_has_atomic="64"
only.Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result
of Ok(previous_value)
if the function returned Some(_)
, else
Err(previous_value)
.
Note: This may call the function multiple times if the value has been changed from other threads in
the meantime, as long as the function returns Some(_)
, but the function will have been applied
only once to the stored value.
fetch_update
takes two Ordering
arguments to describe the memory ordering of this operation.
The first describes the required ordering for when the operation finally succeeds while the second
describes the required ordering for loads. These correspond to the success and failure orderings of
AtomicU64::compare_exchange
respectively.
Using Acquire
as success ordering makes the store part
of this operation Relaxed
, and using Release
makes the final successful load
Relaxed
. The (failed) load ordering can only be SeqCst
, Acquire
or Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Considerations
This method is not magic; it is not provided by the hardware.
It is implemented in terms of
AtomicU64::compare_exchange_weak
,
and suffers from the same drawbacks.
In particular, this method will not circumvent the ABA Problem.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let x = AtomicU64::new(7);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);
1.45.0 · Sourcepub fn fetch_max(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_max(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Maximum with the current value.
Finds the maximum of the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_max
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(23);
assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
assert_eq!(foo.load(Ordering::SeqCst), 42);
If you want to obtain the maximum value in one step, you can use the following:
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(23);
let bar = 42;
let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
assert!(max_foo == 42);
1.45.0 · Sourcepub fn fetch_min(&self, val: u64, order: Ordering) -> u64
Available on target_has_atomic="64"
only.
pub fn fetch_min(&self, val: u64, order: Ordering) -> u64
target_has_atomic="64"
only.Minimum with the current value.
Finds the minimum of the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_min
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
u64
.
§Examples
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(23);
assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 23);
assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 22);
If you want to obtain the minimum value in one step, you can use the following:
use std::sync::atomic::{AtomicU64, Ordering};
let foo = AtomicU64::new(23);
let bar = 12;
let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
assert_eq!(min_foo, 12);
1.70.0 (const: 1.70.0) · Sourcepub const fn as_ptr(&self) -> *mut u64
pub const fn as_ptr(&self) -> *mut u64
Returns a mutable pointer to the underlying integer.
Doing non-atomic reads and writes on the resulting integer can be a data race.
This method is mostly useful for FFI, where the function signature may use
*mut u64
instead of &AtomicU64
.
Returning an *mut
pointer from a shared reference to this atomic is safe because the
atomic types work with interior mutability. All modifications of an atomic change the value
through a shared reference, and can do so safely as long as they use atomic operations. Any
use of the returned raw pointer requires an unsafe
block and still has to uphold the same
restriction: operations on it must be atomic.
§Examples
use std::sync::atomic::AtomicU64;
extern "C" {
fn my_atomic_op(arg: *mut u64);
}
let atomic = AtomicU64::new(1);
// SAFETY: Safe as long as `my_atomic_op` is atomic.
unsafe {
my_atomic_op(atomic.as_ptr());
}
Trait Implementations§
§impl BitStore for AtomicU64
impl BitStore for AtomicU64
§const ALIGNED_TO_SIZE: [(); 1]
const ALIGNED_TO_SIZE: [(); 1]
§const ALIAS_WIDTH: [(); 1]
const ALIAS_WIDTH: [(); 1]
Self
and Self::Alias
be equal
in representation. This is true by fiat for all types except the
unsigned integers. Read more§type Mem = u64
type Mem = u64
BitSlice
. It
is always one of the unsigned integer fundamentals.§type Access = AtomicU64
type Access = AtomicU64
Self::Mem
value between the processor and the memory system. Read more§type Alias = AtomicU64
type Alias = AtomicU64
BitStore
implementor that is known to be alias-safe. It is
used when a BitSlice
introduces multiple handles that view the same
memory location, and at least one of them has write capabilities to it.
It must have the same underlying memory type, and can only change access
patterns or public-facing usage.§type Unalias = AtomicU64
type Unalias = AtomicU64
::Alias
. It is used when a BitSlice
removes the
conditions that required a T -> T::Alias
transition.§fn new(value: <AtomicU64 as BitStore>::Mem) -> AtomicU64
fn new(value: <AtomicU64 as BitStore>::Mem) -> AtomicU64
BitStore
type.§fn load_value(&self) -> <AtomicU64 as BitStore>::Mem
fn load_value(&self) -> <AtomicU64 as BitStore>::Mem
::Access
rules. This may be called when the value is aliased by a write-capable
reference.§fn store_value(&mut self, value: <AtomicU64 as BitStore>::Mem)
fn store_value(&mut self, value: <AtomicU64 as BitStore>::Mem)
::Access
constraints.Source§impl<'de> Deserialize<'de> for AtomicU64
Available on no_target_has_atomic
or target_has_atomic="64"
only.
impl<'de> Deserialize<'de> for AtomicU64
no_target_has_atomic
or target_has_atomic="64"
only.Source§fn deserialize<D>(
deserializer: D,
) -> Result<AtomicU64, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<AtomicU64, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
§impl Radium for AtomicU64
impl Radium for AtomicU64
type Item = u64
§fn into_inner(self) -> u64
fn into_inner(self) -> u64
§fn swap(&self, value: u64, order: Ordering) -> u64
fn swap(&self, value: u64, order: Ordering) -> u64
§fn compare_and_swap(&self, current: u64, new: u64, order: Ordering) -> u64
fn compare_and_swap(&self, current: u64, new: u64, order: Ordering) -> u64
compare_exchange
or compare_exchange_weak
insteadcurrent
value. Read more§fn compare_exchange(
&self,
current: u64,
new: u64,
success: Ordering,
failure: Ordering,
) -> Result<u64, u64>
fn compare_exchange( &self, current: u64, new: u64, success: Ordering, failure: Ordering, ) -> Result<u64, u64>
current
value. Read more§fn compare_exchange_weak(
&self,
current: u64,
new: u64,
success: Ordering,
failure: Ordering,
) -> Result<u64, u64>
fn compare_exchange_weak( &self, current: u64, new: u64, success: Ordering, failure: Ordering, ) -> Result<u64, u64>
current
value. Read more§fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F,
) -> Result<u64, u64>
fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<u64, u64>
§fn fetch_and(&self, value: u64, order: Ordering) -> u64
fn fetch_and(&self, value: u64, order: Ordering) -> u64
value
, and stores the result in self
. Read more§fn fetch_nand(&self, value: u64, order: Ordering) -> u64
fn fetch_nand(&self, value: u64, order: Ordering) -> u64
value
, and stores the result in self
. Read more§fn fetch_or(&self, value: u64, order: Ordering) -> u64
fn fetch_or(&self, value: u64, order: Ordering) -> u64
value
, and stores the result in self
. Read more§fn fetch_xor(&self, value: u64, order: Ordering) -> u64
fn fetch_xor(&self, value: u64, order: Ordering) -> u64
value
, and stores the result in self
. Read moreSource§impl Serialize for AtomicU64
Available on no_target_has_atomic
or target_has_atomic="64"
only.
impl Serialize for AtomicU64
no_target_has_atomic
or target_has_atomic="64"
only.Source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
impl RefUnwindSafe for AtomicU64
target_has_atomic_load_store="64"
only.impl Sync for AtomicU64
Auto Trait Implementations§
impl !Freeze for AtomicU64
impl Send for AtomicU64
impl Unpin for AtomicU64
impl UnwindSafe for AtomicU64
Blanket Implementations§
§impl<A> BitAccess for Awhere
A: Radium,
<A as Radium>::Item: BitRegister,
impl<A> BitAccess for Awhere
A: Radium,
<A as Radium>::Item: BitRegister,
§fn clear_bits(&self, mask: BitMask<Self::Item>) -> Self::Item
fn clear_bits(&self, mask: BitMask<Self::Item>) -> Self::Item
0
. Read more§fn set_bits(&self, mask: BitMask<Self::Item>) -> Self::Item
fn set_bits(&self, mask: BitMask<Self::Item>) -> Self::Item
1
. Read more§fn invert_bits(&self, mask: BitMask<Self::Item>) -> Self::Item
fn invert_bits(&self, mask: BitMask<Self::Item>) -> Self::Item
§fn write_bit<O>(&self, index: BitIdx<Self::Item>, value: bool) -> boolwhere
O: BitOrder,
fn write_bit<O>(&self, index: BitIdx<Self::Item>, value: bool) -> boolwhere
O: BitOrder,
§fn get_writers(
value: bool,
) -> for<'a> fn(_: &'a Self, _: BitMask<Self::Item>) -> Self::Item
fn get_writers( value: bool, ) -> for<'a> fn(_: &'a Self, _: BitMask<Self::Item>) -> Self::Item
value
into all bits under a mask. Read more§impl<T> BitView for Twhere
T: BitStore,
impl<T> BitView for Twhere
T: BitStore,
§fn view_bits<O>(&self) -> &BitSlice<T, O> ⓘwhere
O: BitOrder,
fn view_bits<O>(&self) -> &BitSlice<T, O> ⓘwhere
O: BitOrder,
§fn try_view_bits<O>(&self) -> Result<&BitSlice<T, O>, BitSpanError<T>>where
O: BitOrder,
fn try_view_bits<O>(&self) -> Result<&BitSlice<T, O>, BitSpanError<T>>where
O: BitOrder,
§fn view_bits_mut<O>(&mut self) -> &mut BitSlice<T, O> ⓘwhere
O: BitOrder,
fn view_bits_mut<O>(&mut self) -> &mut BitSlice<T, O> ⓘwhere
O: BitOrder,
§fn try_view_bits_mut<O>(
&mut self,
) -> Result<&mut BitSlice<T, O>, BitSpanError<T>>where
O: BitOrder,
fn try_view_bits_mut<O>(
&mut self,
) -> Result<&mut BitSlice<T, O>, BitSpanError<T>>where
O: BitOrder,
§impl<T> BitViewSized for Twhere
T: BitStore,
impl<T> BitViewSized for Twhere
T: BitStore,
§fn as_raw_slice(&self) -> &[<T as BitView>::Store]
fn as_raw_slice(&self) -> &[<T as BitView>::Store]
§fn as_raw_mut_slice(&mut self) -> &mut [<T as BitView>::Store]
fn as_raw_mut_slice(&mut self) -> &mut [<T as BitView>::Store]
§fn into_bitarray<O>(self) -> BitArray<Self, O>where
O: BitOrder,
fn into_bitarray<O>(self) -> BitArray<Self, O>where
O: BitOrder,
self
in a BitArray
.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Conv for T
impl<T> Conv for T
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
Source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request
§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.