tendermint/
hash.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//! Hash functions and their outputs

use core::{
    fmt::{self, Debug, Display},
    str::FromStr,
};

use bytes::Bytes;
use serde::{de::Error as _, Deserialize, Deserializer, Serialize, Serializer};
use subtle_encoding::{base64, Encoding, Hex};
use tendermint_proto::Protobuf;

use crate::{error::Error, prelude::*};

/// Output size for the SHA-256 hash function
pub const SHA256_HASH_SIZE: usize = 32;

/// Hash algorithms
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub enum Algorithm {
    /// SHA-256
    Sha256,
}

/// Hash digests
#[derive(Copy, Clone, Hash, Eq, PartialEq, PartialOrd, Ord, Default)]
pub enum Hash {
    /// SHA-256 hashes
    Sha256([u8; SHA256_HASH_SIZE]),
    /// Empty hash
    #[default]
    None,
}

impl Protobuf<Vec<u8>> for Hash {}

/// Default conversion from `Vec<u8>` is SHA256 Hash or `None`
impl TryFrom<Vec<u8>> for Hash {
    type Error = Error;

    fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
        if value.is_empty() {
            return Ok(Hash::None);
        }
        Hash::from_bytes(Algorithm::Sha256, &value)
    }
}

impl From<Hash> for Vec<u8> {
    fn from(value: Hash) -> Self {
        match value {
            Hash::Sha256(s) => s.to_vec(),
            Hash::None => vec![],
        }
    }
}

impl AsRef<[u8]> for Hash {
    fn as_ref(&self) -> &[u8] {
        match self {
            Hash::Sha256(ref h) => h.as_ref(),
            Hash::None => &[],
        }
    }
}

impl From<Hash> for Bytes {
    fn from(h: Hash) -> Self {
        Self::copy_from_slice(h.as_ref())
    }
}

impl TryFrom<Bytes> for Hash {
    type Error = Error;

    fn try_from(value: Bytes) -> Result<Self, Self::Error> {
        Self::from_bytes(Algorithm::Sha256, value.as_ref())
    }
}

impl Hash {
    /// Create a new `Hash` with the given algorithm type
    pub fn from_bytes(alg: Algorithm, bytes: &[u8]) -> Result<Hash, Error> {
        if bytes.is_empty() {
            return Ok(Hash::None);
        }
        match alg {
            Algorithm::Sha256 => {
                if bytes.len() == SHA256_HASH_SIZE {
                    let mut h = [0u8; SHA256_HASH_SIZE];
                    h.copy_from_slice(bytes);
                    Ok(Hash::Sha256(h))
                } else {
                    Err(Error::invalid_hash_size())
                }
            },
        }
    }

    /// Decode a `Hash` from upper-case hexadecimal
    pub fn from_hex_upper(alg: Algorithm, s: &str) -> Result<Hash, Error> {
        if s.is_empty() {
            return Ok(Hash::None);
        }
        match alg {
            Algorithm::Sha256 => {
                let mut h = [0u8; SHA256_HASH_SIZE];
                Hex::upper_case()
                    .decode_to_slice(s.as_bytes(), &mut h)
                    .map_err(Error::subtle_encoding)?;
                Ok(Hash::Sha256(h))
            },
        }
    }

    /// Return the digest algorithm used to produce this hash
    pub fn algorithm(self) -> Algorithm {
        match self {
            Hash::Sha256(_) => Algorithm::Sha256,
            Hash::None => Algorithm::Sha256,
        }
    }

    /// Borrow the `Hash` as a byte slice
    pub fn as_bytes(&self) -> &[u8] {
        match self {
            Hash::Sha256(ref h) => h.as_ref(),
            Hash::None => &[],
        }
    }

    /// Convenience function to check for Hash::None
    pub fn is_empty(&self) -> bool {
        self == &Hash::None
    }
}

impl Debug for Hash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Hash::Sha256(_) => write!(f, "Hash::Sha256({self})"),
            Hash::None => write!(f, "Hash::None"),
        }
    }
}

impl Display for Hash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let hex = match self {
            Hash::Sha256(ref h) => Hex::upper_case().encode_to_string(h).unwrap(),
            Hash::None => String::new(),
        };

        write!(f, "{hex}")
    }
}

impl FromStr for Hash {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self, Error> {
        Self::from_hex_upper(Algorithm::Sha256, s)
    }
}

impl<'de> Deserialize<'de> for Hash {
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        let hex = <&str>::deserialize(deserializer)?;

        if hex.is_empty() {
            Err(D::Error::custom("empty hash"))
        } else {
            Ok(Self::from_str(hex).map_err(|e| D::Error::custom(format!("{e}")))?)
        }
    }
}

impl Serialize for Hash {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.to_string().serialize(serializer)
    }
}

/// Serialization/deserialization for `Hash` that allows for empty hashes.
pub mod allow_empty {
    use super::*;

    /// Serialize [`Hash`](enum@crate::hash::Hash) into a string.
    pub fn serialize<S>(value: &Hash, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        value.to_string().serialize(serializer)
    }

    /// Deserialize [`Hash`](enum@crate::hash::Hash) from a string, allowing for
    /// empty hashes.
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Hash, D::Error>
    where
        D: Deserializer<'de>,
    {
        let hex = <&str>::deserialize(deserializer)?;
        Hash::from_str(hex).map_err(serde::de::Error::custom)
    }
}

/// AppHash is usually a SHA256 hash, but in reality it can be any kind of data
#[derive(Clone, PartialEq, Eq, Default)]
pub struct AppHash(Vec<u8>);

impl Protobuf<Vec<u8>> for AppHash {}

impl TryFrom<Vec<u8>> for AppHash {
    type Error = Error;

    fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
        Ok(AppHash(value))
    }
}
impl From<AppHash> for Vec<u8> {
    fn from(value: AppHash) -> Self {
        value.0
    }
}

impl TryFrom<Bytes> for AppHash {
    type Error = Error;

    fn try_from(value: Bytes) -> Result<Self, Self::Error> {
        Ok(AppHash(value.to_vec()))
    }
}
impl From<AppHash> for Bytes {
    fn from(value: AppHash) -> Self {
        value.0.into()
    }
}

impl AppHash {
    /// Return the hash bytes as a byte slice.
    pub fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// Decode a `Hash` from upper-case hexadecimal
    pub fn from_hex_upper(s: &str) -> Result<Self, Error> {
        if s.len() % 2 != 0 {
            return Err(Error::invalid_app_hash_length());
        }
        let mut h = vec![0; s.len() / 2];
        Hex::upper_case()
            .decode_to_slice(s.as_bytes(), &mut h)
            .map_err(Error::subtle_encoding)?;
        Ok(AppHash(h))
    }

    /// Decode a `Hash` from base64-encoded string
    pub fn from_base64(s: &str) -> Result<Self, Error> {
        let h = base64::decode(s).map_err(Error::subtle_encoding)?;
        Ok(AppHash(h))
    }
}

impl AsRef<[u8]> for AppHash {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl Debug for AppHash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "AppHash({})",
            Hex::upper_case().encode_to_string(&self.0).unwrap()
        )
    }
}

impl Display for AppHash {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{}",
            Hex::upper_case().encode_to_string(&self.0).unwrap()
        )
    }
}

impl FromStr for AppHash {
    type Err = Error;

    fn from_str(s: &str) -> Result<Self, Error> {
        Self::from_hex_upper(s).or_else(|_| Self::from_base64(s))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Debug, serde::Deserialize)]
    struct Test {
        #[serde(default)]
        #[serde(with = "crate::serializers::apphash")]
        pub app_hash: AppHash,
    }

    #[test]
    fn apphash_decode_base64() {
        let test = serde_json::from_str::<Test>(
            r#"{"app_hash":"MfX9f+bYoI8IioRb4YT/8/VhPvtNjgWFgTi4mmMSkBc="}"#,
        )
        .unwrap();

        assert_eq!(
            test.app_hash.as_ref(),
            &[
                0x31, 0xF5, 0xFD, 0x7F, 0xE6, 0xD8, 0xA0, 0x8F, 0x08, 0x8A, 0x84, 0x5B, 0xE1, 0x84,
                0xFF, 0xF3, 0xF5, 0x61, 0x3E, 0xFB, 0x4D, 0x8E, 0x05, 0x85, 0x81, 0x38, 0xB8, 0x9A,
                0x63, 0x12, 0x90, 0x17
            ]
        );
    }

    #[test]
    fn apphash_decode_hex() {
        let test = serde_json::from_str::<Test>(
            r#"{"app_hash":"31F5FD7FE6D8A08F088A845BE184FFF3F5613EFB4D8E05858138B89A63129017"}"#,
        )
        .unwrap();

        assert_eq!(
            test.app_hash.as_ref(),
            &[
                0x31, 0xF5, 0xFD, 0x7F, 0xE6, 0xD8, 0xA0, 0x8F, 0x08, 0x8A, 0x84, 0x5B, 0xE1, 0x84,
                0xFF, 0xF3, 0xF5, 0x61, 0x3E, 0xFB, 0x4D, 0x8E, 0x05, 0x85, 0x81, 0x38, 0xB8, 0x9A,
                0x63, 0x12, 0x90, 0x17
            ]
        );
    }
}