penumbra_view/planner.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
use std::{
collections::BTreeMap,
fmt::{self, Debug, Formatter},
mem,
};
use anyhow::{Context, Result};
use penumbra_sct::epoch::Epoch;
use rand::{CryptoRng, RngCore};
use rand_core::OsRng;
use tracing::instrument;
use crate::{SpendableNoteRecord, ViewClient};
use anyhow::anyhow;
use penumbra_asset::{asset, Value};
use penumbra_auction::auction::dutch::DutchAuctionDescription;
use penumbra_auction::auction::dutch::{actions::ActionDutchAuctionWithdrawPlan, DutchAuction};
use penumbra_auction::auction::{
dutch::actions::{ActionDutchAuctionEnd, ActionDutchAuctionSchedule},
AuctionId,
};
use penumbra_community_pool::CommunityPoolDeposit;
use penumbra_dex::{
lp::action::{PositionClose, PositionOpen},
lp::plan::PositionWithdrawPlan,
lp::position::{self, Position},
lp::Reserves,
swap::SwapPlaintext,
swap::SwapPlan,
swap_claim::SwapClaimPlan,
TradingPair,
};
use penumbra_fee::{Fee, FeeTier, GasPrices};
use penumbra_governance::{
proposal_state, DelegatorVotePlan, Proposal, ProposalDepositClaim, ProposalSubmit,
ProposalWithdraw, ValidatorVote, Vote,
};
use penumbra_ibc::IbcRelay;
use penumbra_keys::{keys::AddressIndex, Address};
use penumbra_num::Amount;
use penumbra_proto::view::v1::{NotesForVotingRequest, NotesRequest};
use penumbra_shielded_pool::{Ics20Withdrawal, Note, OutputPlan, SpendPlan};
use penumbra_stake::{rate::RateData, validator, IdentityKey, UndelegateClaimPlan};
use penumbra_tct as tct;
use penumbra_transaction::{
memo::MemoPlaintext,
plan::{ActionPlan, MemoPlan, TransactionPlan},
ActionList, TransactionParameters,
};
/// A planner for a [`TransactionPlan`] that can fill in the required spends and change outputs upon
/// finalization to make a transaction balance.
pub struct Planner<R: RngCore + CryptoRng> {
rng: R,
action_list: ActionList,
/// The fee tier to apply to this transaction.
fee_tier: FeeTier,
/// The set of prices used for gas estimation.
gas_prices: Option<GasPrices>,
/// The transaction parameters to use for the transaction.
transaction_parameters: TransactionParameters,
/// A user-specified change address, if any.
change_address: Option<Address>,
/// A user-specified memo text, if any.
memo_text: Option<String>,
/// A user-specified memo return address, if any.
memo_return_address: Option<Address>,
}
impl<R: RngCore + CryptoRng> Debug for Planner<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("Planner")
.field("action_list", &self.action_list)
.field("fee_tier", &self.fee_tier)
.field("gas_prices", &self.gas_prices)
.field("transaction_parameters", &self.transaction_parameters)
.field("change_address", &self.change_address)
.field("memo_text", &self.memo_text)
.field("memo_return_address", &self.memo_return_address)
.finish()
}
}
impl<R: RngCore + CryptoRng> Planner<R> {
/// Create a new planner.
pub fn new(rng: R) -> Self {
Self {
rng,
action_list: Default::default(),
gas_prices: Default::default(),
fee_tier: Default::default(),
transaction_parameters: Default::default(),
change_address: None,
memo_text: None,
memo_return_address: None,
}
}
/// Add an arbitrary action to the planner.
pub fn action<A: Into<ActionPlan>>(&mut self, action: A) -> &mut Self {
self.action_list.push(action);
self
}
/// Set the current gas prices for fee prediction.
#[instrument(skip(self))]
pub fn set_gas_prices(&mut self, gas_prices: GasPrices) -> &mut Self {
self.gas_prices = Some(gas_prices);
self
}
/// Set the fee tier.
#[instrument(skip(self))]
pub fn set_fee_tier(&mut self, fee_tier: FeeTier) -> &mut Self {
self.fee_tier = fee_tier;
self
}
/// Set the expiry height for the transaction.
#[instrument(skip(self))]
pub fn expiry_height(&mut self, expiry_height: u64) -> &mut Self {
self.transaction_parameters.expiry_height = expiry_height;
self
}
/// Set a human-readable memo text for the transaction.
///
/// Errors if the memo is too long.
#[instrument(skip(self))]
pub fn memo(&mut self, text: String) -> &mut Self {
self.memo_text = Some(text);
self
}
/// Customize the return address for the memo.
///
/// If unset, this will default to the address for the source account. This
/// must be an address controlled by the user, as the expectation is that
/// the recipient can use the address to transact with the sender.
#[instrument(skip(self))]
pub fn memo_return_address(&mut self, address: Address) -> &mut Self {
self.memo_return_address = Some(address);
self
}
/// Set the change address for the transaction.
///
/// If unset, this will default to the address for the source account.
///
/// This can be a foreign address, allowing "send max" functionality.
#[instrument(skip(self))]
pub fn change_address(&mut self, address: Address) -> &mut Self {
self.change_address = Some(address);
self
}
/// Spend a specific positioned note in the transaction.
#[instrument(skip(self))]
pub fn spend(&mut self, note: Note, position: tct::Position) -> &mut Self {
self.action_list
.push(SpendPlan::new(&mut self.rng, note, position));
self
}
/// Add an output note from this transaction.
///
/// Any unused output value will be redirected back to the originating address as change notes.
#[instrument(skip(self))]
pub fn output(&mut self, value: Value, address: Address) -> &mut Self {
self.action_list
.push(OutputPlan::new(&mut self.rng, value, address));
self
}
/// Open a liquidity position in the order book.
#[instrument(skip(self))]
pub fn position_open(&mut self, position: Position) -> &mut Self {
self.action_list.push(PositionOpen { position });
self
}
/// Close a liquidity position in the order book.
#[instrument(skip(self))]
pub fn position_close(&mut self, position_id: position::Id) -> &mut Self {
self.action_list.push(PositionClose { position_id });
self
}
/// Withdraw a liquidity position in the order book.
///
/// Note: Currently this only supports an initial withdrawal from Closed, with no rewards.
#[instrument(skip(self))]
pub fn position_withdraw(
&mut self,
position_id: position::Id,
reserves: Reserves,
pair: TradingPair,
) -> &mut Self {
self.action_list.push(PositionWithdrawPlan {
reserves,
position_id,
pair,
sequence: 0,
rewards: Vec::new(),
});
self
}
/// Schedule a Dutch auction.
#[instrument(skip(self))]
pub fn dutch_auction_schedule(&mut self, description: DutchAuctionDescription) -> &mut Self {
self.action_list
.push(ActionDutchAuctionSchedule { description });
self
}
/// Ends a Dutch auction.
#[instrument(skip(self))]
pub fn dutch_auction_end(&mut self, auction_id: AuctionId) -> &mut Self {
self.action_list.push(ActionDutchAuctionEnd { auction_id });
self
}
/// Withdraws the reserves of the Dutch auction.
///
/// Uses the provided auction state to automatically end the auction
/// if necessary.
#[instrument(skip(self))]
pub fn dutch_auction_withdraw(&mut self, auction: &DutchAuction) -> &mut Self {
let auction_id = auction.description.id();
// Check if the auction needs to be ended
if auction.state.sequence == 0 {
self.dutch_auction_end(auction_id);
}
let reserves_input = Value {
amount: auction.state.input_reserves,
asset_id: auction.description.input.asset_id,
};
let reserves_output = Value {
amount: auction.state.output_reserves,
asset_id: auction.description.output_id,
};
let plan = ActionDutchAuctionWithdrawPlan {
auction_id,
seq: 2, // 1 (closed) -> 2 (withdrawn)
reserves_input,
reserves_output,
};
self.action_list.push(plan);
self
}
/// Perform a swap based on input notes in the transaction.
#[instrument(skip(self))]
pub fn swap(
&mut self,
input_value: Value,
into_asset: asset::Id,
swap_claim_fee: Fee,
claim_address: Address,
) -> Result<&mut Self> {
// Determine the canonical order for the assets being swapped.
// This will determine whether the input amount is assigned to delta_1 or delta_2.
let trading_pair = TradingPair::new(input_value.asset_id, into_asset);
// If `trading_pair.asset_1` is the input asset, then `delta_1` is the input amount,
// and `delta_2` is 0.
//
// Otherwise, `delta_1` is 0, and `delta_2` is the input amount.
let (delta_1, delta_2) = if trading_pair.asset_1() == input_value.asset_id {
(input_value.amount, 0u64.into())
} else {
(0u64.into(), input_value.amount)
};
// If there is no input, then there is no swap.
if delta_1 == Amount::zero() && delta_2 == Amount::zero() {
anyhow::bail!("No input value for swap");
}
// Create the `SwapPlaintext` representing the swap to be performed:
let swap_plaintext = SwapPlaintext::new(
&mut self.rng,
trading_pair,
delta_1,
delta_2,
swap_claim_fee,
claim_address,
);
let swap = SwapPlan::new(&mut self.rng, swap_plaintext);
self.action_list.push(swap);
Ok(self)
}
/// Perform a swap claim based on an input swap with a pre-paid fee.
#[instrument(skip(self))]
pub fn swap_claim(&mut self, plan: SwapClaimPlan) -> &mut Self {
self.action_list.push(plan);
self
}
/// Add a delegation to this transaction.
#[instrument(skip(self))]
pub fn delegate(
&mut self,
epoch: Epoch,
unbonded_amount: Amount,
rate_data: RateData,
) -> &mut Self {
let delegation = rate_data.build_delegate(epoch, unbonded_amount);
self.action_list.push(delegation);
self
}
/// Add an undelegation to this transaction.
#[instrument(skip(self))]
pub fn undelegate(
&mut self,
epoch: Epoch,
delegation_amount: Amount,
rate_data: RateData,
) -> &mut Self {
let undelegation = rate_data.build_undelegate(epoch, delegation_amount);
self.action_list.push(undelegation);
self
}
/// Add an undelegate claim to this transaction.
#[instrument(skip(self))]
pub fn undelegate_claim(&mut self, claim_plan: UndelegateClaimPlan) -> &mut Self {
self.action_list.push(claim_plan);
self
}
/// Upload a validator definition in this transaction.
#[instrument(skip(self))]
pub fn validator_definition(&mut self, new_validator: validator::Definition) -> &mut Self {
self.action_list.push(new_validator);
self
}
/// Submit a new governance proposal in this transaction.
#[instrument(skip(self))]
pub fn proposal_submit(&mut self, proposal: Proposal, deposit_amount: Amount) -> &mut Self {
self.action_list.push(ProposalSubmit {
proposal,
deposit_amount,
});
self
}
/// Withdraw a governance proposal in this transaction.
#[instrument(skip(self))]
pub fn proposal_withdraw(&mut self, proposal: u64, reason: String) -> &mut Self {
self.action_list.push(ProposalWithdraw { proposal, reason });
self
}
/// Claim a governance proposal deposit in this transaction.
#[instrument(skip(self))]
pub fn proposal_deposit_claim(
&mut self,
proposal: u64,
deposit_amount: Amount,
outcome: proposal_state::Outcome<()>,
) -> &mut Self {
self.action_list.push(ProposalDepositClaim {
proposal,
deposit_amount,
outcome,
});
self
}
/// Deposit a value into the Community Pool.
#[instrument(skip(self))]
pub fn community_pool_deposit(&mut self, value: Value) -> &mut Self {
self.action_list.push(CommunityPoolDeposit { value });
self
}
/// Cast a validator vote in this transaction.
#[instrument(skip(self))]
pub fn validator_vote(&mut self, vote: ValidatorVote) -> &mut Self {
self.action_list.push(vote);
self
}
/// Perform an ICS-20 withdrawal
#[instrument(skip(self))]
pub fn ics20_withdrawal(&mut self, withdrawal: Ics20Withdrawal) -> &mut Self {
self.action_list.push(withdrawal);
self
}
/// Perform an IBC action
#[instrument(skip(self))]
pub fn ibc_action(&mut self, ibc_action: IbcRelay) -> &mut Self {
self.action_list.push(ibc_action);
self
}
/// Vote with all possible vote weight on a given proposal.
#[instrument(skip_all)]
pub async fn delegator_vote<V: ViewClient>(
// TODO this sucks, why isn't there a bundle of proposal data to use for voting
// how is that not the thing returned by the rpc? why do we have to query a bunch of shit
// independently and stitch it together?
&mut self,
view: &mut V,
source: AddressIndex,
proposal: u64,
vote: Vote,
start_block_height: u64,
start_position: tct::Position,
start_rate_data: BTreeMap<IdentityKey, RateData>,
) -> Result<&mut Self, anyhow::Error> {
let voting_notes = view
.notes_for_voting(NotesForVotingRequest {
votable_at_height: start_block_height,
address_index: Some(source.into()),
})
.await?;
anyhow::ensure!(
!voting_notes.is_empty(),
"no notes were found for voting on proposal {}",
proposal
);
// 1. Create a DelegatorVotePlan for each votable note.
for (record, ik) in &voting_notes {
let Some(validator_start_rate_data) = start_rate_data.get(&ik) else {
tracing::debug!("missing rate data for votable note delegated to {}", ik);
continue;
};
let voting_power_at_vote_start =
validator_start_rate_data.unbonded_amount(record.note.amount());
// 1. Create a DelegatorVotePlan that votes with this note on the proposal.
let plan = DelegatorVotePlan::new(
&mut self.rng,
proposal,
start_position,
vote,
record.note.clone(),
record.position,
voting_power_at_vote_start,
);
self.delegator_vote_precise(plan);
}
// 2. Here, we could sweep any spendable notes with delegation tokens to
// a new output to try to unlink them from a future vote. In practice
// this is meaningless because we don't have flow encryption, so
// delegator votes reveal the precise amount, and this amount will
// likely be unique to the delegator and enough to link their votes.
// Also, because we're in a single transaction, the pattern of
// delegations will also be revealed (vs creating distinct transactions
// for each validator).
//
// So instead, we do nothing.
Ok(self)
}
/// Vote with a specific positioned note in the transaction, rather than automatically.
#[instrument(skip(self, plan))]
pub fn delegator_vote_precise(&mut self, plan: DelegatorVotePlan) -> &mut Self {
self.action_list.push(plan);
self
}
/// Prioritize notes to spend to release value of a specific transaction.
///
/// Various logic is possible for note selection. Currently, this method
/// prioritizes notes sent to a one-time address, then notes with the largest
/// value:
///
/// - Prioritizing notes sent to one-time addresses optimizes for a future in
/// which we implement DAGSync keyed by fuzzy message detection (which will not
/// be able to detect notes sent to one-time addresses). Spending these notes
/// immediately converts them into change notes, sent to the default address for
/// the users' account, which are detectable.
///
/// - Prioritizing notes with the largest value optimizes for gas used by the
/// transaction.
///
/// We may want to make note prioritization configurable in the future. For
/// instance, a user might prefer a note prioritization strategy that harvested
/// capital losses when possible, using cost basis information retained by the
/// view server.
pub fn prioritize_and_filter_spendable_notes(
&mut self,
records: Vec<SpendableNoteRecord>,
) -> Vec<SpendableNoteRecord> {
let mut filtered = records
.into_iter()
.filter(|record| record.note.amount() > Amount::zero())
.collect::<Vec<_>>();
filtered.sort_by(|a, b| {
// Sort by whether the note was sent to an ephemeral address...
match (
a.address_index.is_ephemeral(),
b.address_index.is_ephemeral(),
) {
(true, false) => std::cmp::Ordering::Less,
(false, true) => std::cmp::Ordering::Greater,
// ... then by largest amount.
_ => b.note.amount().cmp(&a.note.amount()),
}
});
filtered
}
/// Add spends and change outputs as required to balance the transaction, using the view service
/// provided to supply the notes and other information.
pub async fn plan<V: ViewClient>(
&mut self,
view: &mut V,
mut source: AddressIndex,
) -> anyhow::Result<TransactionPlan> {
// Wipe out the randomizer for the provided source, since
// 1. All randomizers correspond to the same account
// 2. Using one-time addresses for change addresses is undesirable.
source.randomizer = [0u8; 12];
// Compute the change address for this transaction.
let change_address = if let Some(ref address) = self.change_address {
address.clone()
} else {
view.address_by_index(source).await?.clone()
};
// Phase 1, "process all of the user-supplied intents into complete
// action plans", has already happened using the builder API.
//
// Compute an initial fee estimate based on the actions we have so far.
self.action_list.refresh_fee_and_change(
&mut self.rng,
&self
.gas_prices
.context("planner instances must call set_gas_prices prior to planning")?,
&self.fee_tier,
&change_address,
);
// Phase 2: balance the transaction with information from the view service.
//
// It's possible that adding spends could increase the gas, increasing
// the fee amount, and so on, so we add spends iteratively. However, we
// need to query all the notes we'll use for planning upfront, so we
// don't accidentally try to use the same one twice.
let mut notes_by_asset_id = BTreeMap::new();
for required in self.action_list.balance_with_fee().required() {
// Find all the notes of this asset in the source account.
let records: Vec<SpendableNoteRecord> = view
.notes(NotesRequest {
include_spent: false,
asset_id: Some(required.asset_id.into()),
address_index: Some(source.into()),
amount_to_spend: None,
})
.await?;
notes_by_asset_id.insert(
required.asset_id,
self.prioritize_and_filter_spendable_notes(records),
);
}
let mut iterations = 0usize;
let asset_cache = view.assets().await?;
// Now iterate over the action list's imbalances to balance the transaction.
while let Some(required) = self.action_list.balance_with_fee().required().next() {
// Find a single note to spend towards the required balance.
let note = notes_by_asset_id
.get_mut(&required.asset_id)
.expect("we already made a notes request for each required asset")
.pop()
.ok_or_else(|| {
anyhow!(
"ran out of notes to spend while planning transaction, need {}",
required.format(&asset_cache)
)
})?;
// Add a spend for that note to the action list.
self.action_list
.push(SpendPlan::new(&mut OsRng, note.note, note.position));
// Refresh the fee estimate and change outputs.
self.action_list.refresh_fee_and_change(
&mut self.rng,
&self
.gas_prices
.context("planner instances must call set_gas_prices prior to planning")?,
&self.fee_tier,
&change_address,
);
iterations = iterations + 1;
if iterations > 100 {
return Err(anyhow!("failed to plan transaction after 100 iterations"));
}
}
// Construct the memo plan for the transaction, using user-specified data if it
// was provided.
let memo_plan = if self.action_list.requires_memo() {
let return_address = if let Some(ref address) = self.memo_return_address {
// Check that this address is actually controlled by the user.
// We don't have an FVK, so we have to ask the view service.
anyhow::ensure!(
view.index_by_address(address.clone()).await?.is_some(),
"return address for memo is not controlled by the user",
);
address.clone()
} else {
view.address_by_index(source).await?.clone()
};
Some(MemoPlan::new(
&mut self.rng,
MemoPlaintext::new(return_address, self.memo_text.take().unwrap_or_default())
.context("could not create memo plaintext")?,
))
} else {
None
};
// Configure the transaction parameters with the chain ID.
let app_params = view.app_params().await?;
let chain_id = app_params.chain_id.clone();
self.transaction_parameters.chain_id = chain_id.clone();
// Fetch the FMD parameters that will be used to plan the transaction.
// (This really should have been considered witness data. Oh well.)
let fmd_params = view.fmd_parameters().await?;
let plan = mem::take(&mut self.action_list).into_plan(
&mut self.rng,
&fmd_params,
self.transaction_parameters.clone(),
memo_plan,
)?;
// Reset the planner in case it were reused. We don't want people to do that
// but otherwise we can't do builder method chaining with &mut self, and forcing
// the builder to move between calls is annoying for callers who are building up
// actions programmatically. Except we can't do a normal std::mem::replace here because
// the generic RNG mucks everything up. So it's just awful.
self.action_list = Default::default();
self.gas_prices = Default::default();
self.fee_tier = Default::default();
self.transaction_parameters = Default::default();
self.change_address = None;
self.memo_text = None;
self.memo_return_address = None;
Ok(plan)
}
}