1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use anyhow::Result;
use ark_ff::Zero;
use decaf377::Fr;
use decaf377_rdsa as rdsa;
use penumbra_keys::FullViewingKey;
use penumbra_txhash::AuthorizingData;

use super::TransactionPlan;
use crate::ActionPlan;
use crate::{action::Action, AuthorizationData, Transaction, TransactionBody, WitnessData};

impl TransactionPlan {
    /// Builds a [`TransactionPlan`] by slotting in the
    /// provided prebuilt actions instead of using the
    /// [`ActionPlan`]s in the TransactionPlan.
    pub fn build_unauth_with_actions(
        self,
        actions: Vec<Action>,
        witness_data: &WitnessData,
    ) -> Result<Transaction> {
        // Add the memo if it is planned.
        let memo = self
            .memo
            .as_ref()
            .map(|memo_data| memo_data.memo())
            .transpose()?;

        let detection_data = self.detection_data.as_ref().map(|x| x.detection_data());

        let transaction_body = TransactionBody {
            actions,
            transaction_parameters: self.transaction_parameters,
            detection_data,
            memo,
        };

        Ok(Transaction {
            transaction_body,
            anchor: witness_data.anchor,
            binding_sig: [0; 64].into(),
        })
    }

    /// Slot in the [`AuthorizationData`] and derive the synthetic
    /// blinding factors needed to compute the binding signature
    /// and assemble the transaction.
    pub fn apply_auth_data(
        &self,
        auth_data: &AuthorizationData,
        mut transaction: Transaction,
    ) -> Result<Transaction> {
        // Do some basic input sanity-checking.
        let spend_count = transaction.spends().count();
        if auth_data.spend_auths.len() != spend_count {
            anyhow::bail!(
                "expected {} spend auths but got {}",
                spend_count,
                auth_data.spend_auths.len()
            );
        }

        // Derive the synthetic blinding factors from `TransactionPlan`.
        let mut synthetic_blinding_factor = Fr::zero();

        // Accumulate the blinding factors.
        for action_plan in &self.actions {
            synthetic_blinding_factor += action_plan.value_blinding();
        }

        // Overwrite the placeholder authorization signatures with the real `AuthorizationData`.
        for (spend, auth_sig) in transaction
            .transaction_body
            .actions
            .iter_mut()
            .filter_map(|action| {
                if let Action::Spend(s) = action {
                    Some(s)
                } else {
                    None
                }
            })
            .zip(auth_data.spend_auths.clone().into_iter())
        {
            spend.auth_sig = auth_sig;
        }

        for (delegator_vote, auth_sig) in transaction
            .transaction_body
            .actions
            .iter_mut()
            .filter_map(|action| {
                if let Action::DelegatorVote(s) = action {
                    Some(s)
                } else {
                    None
                }
            })
            .zip(auth_data.delegator_vote_auths.clone().into_iter())
        {
            delegator_vote.auth_sig = auth_sig;
        }

        // Compute the binding signature and assemble the transaction.
        let binding_signing_key = rdsa::SigningKey::from(synthetic_blinding_factor);
        let auth_hash = transaction.transaction_body.auth_hash();

        let binding_sig = binding_signing_key.sign_deterministic(auth_hash.as_bytes());
        tracing::debug!(bvk = ?rdsa::VerificationKey::from(&binding_signing_key), ?auth_hash);

        transaction.binding_sig = binding_sig;

        Ok(transaction)
    }

    /// Build the serial transaction this plan describes.
    pub fn build(
        self,
        full_viewing_key: &FullViewingKey,
        witness_data: &WitnessData,
        auth_data: &AuthorizationData,
    ) -> Result<Transaction> {
        // TODO: stream progress updates
        // 1. Build each action.
        let actions = self
            .actions
            .iter()
            .map(|action_plan| {
                ActionPlan::build_unauth(
                    action_plan.clone(),
                    full_viewing_key,
                    witness_data,
                    self.memo_key(),
                )
            })
            .collect::<Result<Vec<_>>>()?;

        // 2. Pass in the prebuilt actions to the build method.
        let tx = self
            .clone()
            .build_unauth_with_actions(actions, witness_data)?;

        // 3. Slot in the authorization data with .apply_auth_data,
        let tx = self.apply_auth_data(auth_data, tx)?;

        // 4. Return the completed transaction.
        Ok(tx)
    }

    #[cfg(feature = "parallel")]
    /// Build the transaction this plan describes while proving concurrently.
    /// This can be used in environments that support tokio tasks.
    pub async fn build_concurrent(
        self,
        full_viewing_key: &FullViewingKey,
        witness_data: &WitnessData,
        auth_data: &AuthorizationData,
    ) -> Result<Transaction> {
        // Clone the witness data into an Arc so it can be shared between tasks.
        let witness_data = std::sync::Arc::new(witness_data.clone());

        // 1. Build each action (concurrently).
        let action_handles = self
            .actions
            .iter()
            .cloned()
            .map(|action_plan| {
                let fvk2 = full_viewing_key.clone();
                let witness_data2 = witness_data.clone(); // Arc
                let memo_key2 = self.memo_key();
                tokio::task::spawn_blocking(move || {
                    ActionPlan::build_unauth(action_plan, &fvk2, &*witness_data2, memo_key2)
                })
            })
            .collect::<Vec<_>>();

        // 1.5. Collect all of the actions.
        let mut actions = Vec::new();
        for handle in action_handles {
            actions.push(handle.await??);
        }

        // 2. Pass in the prebuilt actions to the build method.
        let tx = self
            .clone()
            .build_unauth_with_actions(actions, &*witness_data)?;

        // 3. Slot in the authorization data with .apply_auth_data,
        let tx = self.apply_auth_data(auth_data, tx)?;

        // 4. Return the completed transaction.
        Ok(tx)
    }

    /// Returns a [`WitnessData`], which may be used to build this transaction.
    pub fn witness_data(&self, sct: &penumbra_tct::Tree) -> Result<WitnessData, anyhow::Error> {
        let anchor = sct.root();

        let witness_note = |spend: &penumbra_shielded_pool::SpendPlan| {
            let commitment = spend.note.commit();
            sct.witness(commitment)
                .ok_or_else(|| anyhow::anyhow!("commitment should exist in tree"))
                .map(|proof| (commitment, proof))
        };
        let state_commitment_proofs = self
            .spend_plans()
            .map(witness_note)
            .collect::<Result<_, _>>()?;

        Ok(WitnessData {
            anchor,
            state_commitment_proofs,
        })
    }
}