penumbra_transaction/
plan.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
//! Declarative transaction plans, used for transaction authorization and
//! creation.

use anyhow::Result;
use decaf377_fmd::Precision;
use penumbra_community_pool::{CommunityPoolDeposit, CommunityPoolOutput, CommunityPoolSpend};
use penumbra_dex::{
    lp::action::{PositionClose, PositionOpen},
    lp::plan::PositionWithdrawPlan,
    swap::SwapPlan,
    swap_claim::SwapClaimPlan,
};
use penumbra_governance::{
    DelegatorVotePlan, ProposalDepositClaim, ProposalSubmit, ProposalWithdraw, ValidatorVote,
};
use penumbra_ibc::IbcRelay;
use penumbra_keys::{Address, FullViewingKey, PayloadKey};
use penumbra_proto::{core::transaction::v1 as pb, DomainType};
use penumbra_shielded_pool::{Ics20Withdrawal, OutputPlan, SpendPlan};
use penumbra_stake::{Delegate, Undelegate, UndelegateClaimPlan};
use penumbra_txhash::{EffectHash, EffectingData};
use rand::{CryptoRng, Rng};
use serde::{Deserialize, Serialize};

mod action;
mod auth;
mod build;
mod clue;
mod detection_data;
mod memo;
mod spend;

pub use action::ActionPlan;
pub use clue::CluePlan;
pub use detection_data::DetectionDataPlan;
pub use memo::MemoPlan;

use crate::TransactionParameters;

/// A declaration of a planned [`Transaction`](crate::Transaction),
/// for use in transaction authorization and creation.
#[derive(Clone, Debug, Default, Serialize, Deserialize)]
#[serde(try_from = "pb::TransactionPlan", into = "pb::TransactionPlan")]
pub struct TransactionPlan {
    pub actions: Vec<ActionPlan>,
    pub transaction_parameters: TransactionParameters,
    pub detection_data: Option<DetectionDataPlan>,
    pub memo: Option<MemoPlan>,
}

impl TransactionPlan {
    /// Sort the actions in [`TransactionPlan`] by type, using the protobuf field number in the [`ActionPlan`].
    pub fn sort_actions(&mut self) {
        self.actions
            .sort_by_key(|action: &ActionPlan| action.variant_index());
    }

    /// Computes the [`EffectHash`] for the [`Transaction`] described by this
    /// [`TransactionPlan`].
    ///
    /// This method does not require constructing the entire [`Transaction`],
    /// but it does require the associated [`FullViewingKey`] to derive
    /// effecting data that will be fed into the [`EffectHash`].
    ///
    /// This method is not an [`EffectingData`] impl because it needs an extra input,
    /// the FVK, to partially construct the transaction.
    pub fn effect_hash(&self, fvk: &FullViewingKey) -> Result<EffectHash> {
        // This implementation is identical to the one for Transaction, except that we
        // don't need to actually construct the entire `TransactionBody` with
        // complete `Action`s, we just need to construct the bodies of the
        // actions the transaction will have when constructed.

        let mut state = blake2b_simd::Params::new()
            .personal(b"PenumbraEfHs")
            .to_state();

        let parameters_hash = self.transaction_parameters.effect_hash();

        let memo_hash = match self.memo {
            Some(ref memo) => memo.memo()?.effect_hash(),
            None => EffectHash::default(),
        };

        let detection_data_hash = self
            .detection_data
            .as_ref()
            .map(|plan| plan.detection_data().effect_hash())
            // If the detection data is not present, use the all-zero hash to
            // record its absence in the overall effect hash.
            .unwrap_or_default();

        // Hash the fixed data of the transaction body.
        state.update(parameters_hash.as_bytes());
        state.update(memo_hash.as_bytes());
        state.update(detection_data_hash.as_bytes());

        // Hash the number of actions, then each action.
        let num_actions = self.actions.len() as u32;
        state.update(&num_actions.to_le_bytes());

        // If the memo_key is None, then there is no memo, so there will be no
        // outputs that the memo key is passed to, so we can fill in a dummy key.
        let memo_key = self.memo_key().unwrap_or([0u8; 32].into());

        // Hash the effecting data of each action, in the order it appears in the plan,
        // which will be the order it appears in the transaction.
        for action_plan in &self.actions {
            state.update(action_plan.effect_hash(fvk, &memo_key).as_bytes());
        }

        Ok(EffectHash(state.finalize().as_array().clone()))
    }

    pub fn spend_plans(&self) -> impl Iterator<Item = &SpendPlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::Spend(s) = action {
                Some(s)
            } else {
                None
            }
        })
    }

    pub fn output_plans(&self) -> impl Iterator<Item = &OutputPlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::Output(o) = action {
                Some(o)
            } else {
                None
            }
        })
    }

    pub fn delegations(&self) -> impl Iterator<Item = &Delegate> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::Delegate(d) = action {
                Some(d)
            } else {
                None
            }
        })
    }

    pub fn undelegations(&self) -> impl Iterator<Item = &Undelegate> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::Undelegate(d) = action {
                Some(d)
            } else {
                None
            }
        })
    }

    pub fn undelegate_claim_plans(&self) -> impl Iterator<Item = &UndelegateClaimPlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::UndelegateClaim(d) = action {
                Some(d)
            } else {
                None
            }
        })
    }

    pub fn ibc_actions(&self) -> impl Iterator<Item = &IbcRelay> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::IbcAction(ibc_action) = action {
                Some(ibc_action)
            } else {
                None
            }
        })
    }

    pub fn validator_definitions(
        &self,
    ) -> impl Iterator<Item = &penumbra_stake::validator::Definition> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::ValidatorDefinition(d) = action {
                Some(d)
            } else {
                None
            }
        })
    }

    pub fn proposal_submits(&self) -> impl Iterator<Item = &ProposalSubmit> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::ProposalSubmit(p) = action {
                Some(p)
            } else {
                None
            }
        })
    }

    pub fn proposal_withdraws(&self) -> impl Iterator<Item = &ProposalWithdraw> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::ProposalWithdraw(p) = action {
                Some(p)
            } else {
                None
            }
        })
    }

    pub fn delegator_vote_plans(&self) -> impl Iterator<Item = &DelegatorVotePlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::DelegatorVote(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn validator_votes(&self) -> impl Iterator<Item = &ValidatorVote> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::ValidatorVote(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn proposal_deposit_claims(&self) -> impl Iterator<Item = &ProposalDepositClaim> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::ProposalDepositClaim(p) = action {
                Some(p)
            } else {
                None
            }
        })
    }

    pub fn swap_plans(&self) -> impl Iterator<Item = &SwapPlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::Swap(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn swap_claim_plans(&self) -> impl Iterator<Item = &SwapClaimPlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::SwapClaim(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn community_pool_spends(&self) -> impl Iterator<Item = &CommunityPoolSpend> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::CommunityPoolSpend(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn community_pool_deposits(&self) -> impl Iterator<Item = &CommunityPoolDeposit> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::CommunityPoolDeposit(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn community_pool_outputs(&self) -> impl Iterator<Item = &CommunityPoolOutput> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::CommunityPoolOutput(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn position_openings(&self) -> impl Iterator<Item = &PositionOpen> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::PositionOpen(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn position_closings(&self) -> impl Iterator<Item = &PositionClose> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::PositionClose(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn position_withdrawals(&self) -> impl Iterator<Item = &PositionWithdrawPlan> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::PositionWithdraw(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    pub fn ics20_withdrawals(&self) -> impl Iterator<Item = &Ics20Withdrawal> {
        self.actions.iter().filter_map(|action| {
            if let ActionPlan::Ics20Withdrawal(v) = action {
                Some(v)
            } else {
                None
            }
        })
    }

    /// Convenience method to get all the destination addresses for each `OutputPlan`s.
    pub fn dest_addresses(&self) -> Vec<Address> {
        self.output_plans()
            .map(|plan| plan.dest_address.clone())
            .collect()
    }

    /// Convenience method to get the number of `OutputPlan`s in this transaction.
    pub fn num_outputs(&self) -> usize {
        self.output_plans().count()
    }

    /// Convenience method to get the number of `SpendPlan`s in this transaction.
    pub fn num_spends(&self) -> usize {
        self.spend_plans().count()
    }

    /// Convenience method to get the number of proofs in this transaction.
    pub fn num_proofs(&self) -> usize {
        self.actions
            .iter()
            .map(|action| match action {
                ActionPlan::Spend(_) => 1,
                ActionPlan::Output(_) => 1,
                ActionPlan::Swap(_) => 1,
                ActionPlan::SwapClaim(_) => 1,
                ActionPlan::UndelegateClaim(_) => 1,
                ActionPlan::DelegatorVote(_) => 1,
                _ => 0,
            })
            .sum()
    }

    /// Method to populate the detection data for this transaction plan.
    pub fn populate_detection_data<R: CryptoRng + Rng>(
        &mut self,
        mut rng: R,
        precision: Precision,
    ) {
        // Add one clue per recipient.
        let mut clue_plans = vec![];
        for dest_address in self.dest_addresses() {
            clue_plans.push(CluePlan::new(&mut rng, dest_address, precision));
        }

        // Now add dummy clues until we have one clue per output.
        let num_dummy_clues = self.num_outputs() - clue_plans.len();
        for _ in 0..num_dummy_clues {
            let dummy_address = Address::dummy(&mut rng);
            clue_plans.push(CluePlan::new(&mut rng, dummy_address, precision));
        }

        if !clue_plans.is_empty() {
            self.detection_data = Some(DetectionDataPlan { clue_plans });
        } else {
            self.detection_data = None;
        }
    }

    /// A builder-style version of [`TransactionPlan::populate_detection_data()`].
    ///
    /// Populates the detection data for this transaction plan.
    pub fn with_populated_detection_data<R: CryptoRng + Rng>(
        mut self,
        rng: R,
        precision_bits: Precision,
    ) -> Self {
        self.populate_detection_data(rng, precision_bits);
        self
    }

    /// Convenience method to grab the `MemoKey` from the plan.
    pub fn memo_key(&self) -> Option<PayloadKey> {
        self.memo.as_ref().map(|memo_plan| memo_plan.key.clone())
    }
}

impl DomainType for TransactionPlan {
    type Proto = pb::TransactionPlan;
}

impl From<TransactionPlan> for pb::TransactionPlan {
    fn from(msg: TransactionPlan) -> Self {
        Self {
            actions: msg.actions.into_iter().map(Into::into).collect(),
            transaction_parameters: Some(msg.transaction_parameters.into()),
            detection_data: msg.detection_data.map(Into::into),
            memo: msg.memo.map(Into::into),
        }
    }
}

impl TryFrom<pb::TransactionPlan> for TransactionPlan {
    type Error = anyhow::Error;
    fn try_from(value: pb::TransactionPlan) -> Result<Self, Self::Error> {
        Ok(Self {
            actions: value
                .actions
                .into_iter()
                .map(TryInto::try_into)
                .collect::<Result<_, _>>()?,
            transaction_parameters: value
                .transaction_parameters
                .ok_or_else(|| anyhow::anyhow!("transaction plan missing transaction parameters"))?
                .try_into()?,
            detection_data: value.detection_data.map(TryInto::try_into).transpose()?,
            memo: value.memo.map(TryInto::try_into).transpose()?,
        })
    }
}

#[cfg(test)]
mod tests {
    use penumbra_asset::{asset, Value, STAKING_TOKEN_ASSET_ID};
    use penumbra_dex::{swap::SwapPlaintext, swap::SwapPlan, TradingPair};
    use penumbra_fee::Fee;
    use penumbra_keys::{
        keys::{Bip44Path, SeedPhrase, SpendKey},
        Address,
    };
    use penumbra_shielded_pool::Note;
    use penumbra_shielded_pool::{OutputPlan, SpendPlan};
    use penumbra_tct as tct;
    use penumbra_txhash::EffectingData as _;
    use rand_core::OsRng;

    use crate::{
        memo::MemoPlaintext,
        plan::{CluePlan, DetectionDataPlan, MemoPlan, TransactionPlan},
        TransactionParameters, WitnessData,
    };

    /// This isn't an exhaustive test, but we don't currently have a
    /// great way to generate actions for randomized testing.
    ///
    /// All we hope to check here is that, for a basic transaction plan,
    /// we compute the same auth hash for the plan and for the transaction.
    #[test]
    fn plan_effect_hash_matches_transaction_effect_hash() {
        let rng = OsRng;
        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let (addr, _dtk) = fvk.incoming().payment_address(0u32.into());

        let mut sct = tct::Tree::new();

        let note0 = Note::generate(
            &mut OsRng,
            &addr,
            Value {
                amount: 10000u64.into(),
                asset_id: *STAKING_TOKEN_ASSET_ID,
            },
        );
        let note1 = Note::generate(
            &mut OsRng,
            &addr,
            Value {
                amount: 20000u64.into(),
                asset_id: *STAKING_TOKEN_ASSET_ID,
            },
        );

        sct.insert(tct::Witness::Keep, note0.commit()).unwrap();
        sct.insert(tct::Witness::Keep, note1.commit()).unwrap();

        let trading_pair = TradingPair::new(
            asset::Cache::with_known_assets()
                .get_unit("nala")
                .unwrap()
                .id(),
            asset::Cache::with_known_assets()
                .get_unit("upenumbra")
                .unwrap()
                .id(),
        );

        let swap_plaintext = SwapPlaintext::new(
            &mut OsRng,
            trading_pair,
            100000u64.into(),
            1u64.into(),
            Fee(Value {
                amount: 3u64.into(),
                asset_id: asset::Cache::with_known_assets()
                    .get_unit("upenumbra")
                    .unwrap()
                    .id(),
            }),
            addr.clone(),
        );

        let mut rng = OsRng;

        let memo_plaintext = MemoPlaintext::new(Address::dummy(&mut rng), "".to_string()).unwrap();
        let mut plan: TransactionPlan = TransactionPlan {
            // Put outputs first to check that the auth hash
            // computation is not affected by plan ordering.
            actions: vec![
                OutputPlan::new(
                    &mut OsRng,
                    Value {
                        amount: 30000u64.into(),
                        asset_id: *STAKING_TOKEN_ASSET_ID,
                    },
                    addr.clone(),
                )
                .into(),
                SpendPlan::new(&mut OsRng, note0, 0u64.into()).into(),
                SpendPlan::new(&mut OsRng, note1, 1u64.into()).into(),
                SwapPlan::new(&mut OsRng, swap_plaintext).into(),
            ],
            transaction_parameters: TransactionParameters {
                expiry_height: 0,
                fee: Fee::default(),
                chain_id: "penumbra-test".to_string(),
            },
            detection_data: Some(DetectionDataPlan {
                clue_plans: vec![CluePlan::new(&mut OsRng, addr, 1.try_into().unwrap())],
            }),
            memo: Some(MemoPlan::new(&mut OsRng, memo_plaintext.clone())),
        };

        // Sort actions within the transaction plan.
        plan.sort_actions();

        println!("{}", serde_json::to_string_pretty(&plan).unwrap());

        let plan_effect_hash = plan.effect_hash(fvk).unwrap();

        let auth_data = plan.authorize(rng, &sk).unwrap();
        let witness_data = WitnessData {
            anchor: sct.root(),
            state_commitment_proofs: plan
                .spend_plans()
                .map(|spend: &SpendPlan| {
                    (
                        spend.note.commit(),
                        sct.witness(spend.note.commit()).unwrap(),
                    )
                })
                .collect(),
        };
        let transaction = plan.build(fvk, &witness_data, &auth_data).unwrap();

        let transaction_effect_hash = transaction.effect_hash();

        assert_eq!(plan_effect_hash, transaction_effect_hash);

        let decrypted_memo = transaction.decrypt_memo(fvk).expect("can decrypt memo");
        assert_eq!(decrypted_memo, memo_plaintext);

        // TODO: fix this and move into its own test?
        // // Also check the concurrent build results in the same effect hash.
        // let rt = Runtime::new().unwrap();
        // let transaction = rt
        //     .block_on(async move {
        //         plan.build_concurrent(&mut OsRng, fvk, auth_data, witness_data)
        //             .await
        //     })
        //     .expect("can build");
        // assert_eq!(plan_effect_hash, transaction.effect_hash());
    }
}