penumbra_transaction/action_list.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
use anyhow::Result;
use std::collections::BTreeMap;
use crate::plan::MemoPlan;
use crate::{gas::GasCost, TransactionParameters};
use crate::{ActionPlan, TransactionPlan};
use penumbra_asset::{asset, Balance};
use penumbra_fee::{Fee, FeeTier, Gas, GasPrices};
use penumbra_keys::Address;
use penumbra_num::Amount;
use penumbra_shielded_pool::{fmd, OutputPlan};
use rand_core::{CryptoRng, RngCore};
/// A list of planned actions to be turned into a TransactionPlan.
///
/// A transaction is a bundle of actions plus auxiliary data (like a memo). A
/// transaction plan is a bundle of action plans plus plans for the auxiliary
/// data (like a memo plan). The [`ActionList`] is just the list of actions,
/// which is useful for building up a [`TransactionPlan`].
#[derive(Debug, Default, Clone)]
pub struct ActionList {
// A list of the user-specified outputs.
actions: Vec<ActionPlan>,
// These are tracked separately for convenience when adjusting change.
change_outputs: BTreeMap<asset::Id, OutputPlan>,
// The fee is tracked as part of the ActionList so it can be adjusted
// internally to handle special cases like swap claims.
fee: Fee,
}
impl ActionList {
/// Returns an immutable reference to a list of action plans.
pub fn actions(&self) -> &Vec<ActionPlan> {
&self.actions
}
/// Returns an immutable reference to a map of change outputs.
pub fn change_outputs(&self) -> &BTreeMap<asset::Id, OutputPlan> {
&self.change_outputs
}
/// Returns an immutable reference to the fee.
pub fn fee(&self) -> &Fee {
&self.fee
}
/// Returns true if the resulting transaction would require a memo.
pub fn requires_memo(&self) -> bool {
let has_change_outputs = !self.change_outputs.is_empty();
let has_other_outputs = self
.actions
.iter()
.any(|action| matches!(action, ActionPlan::Output(_)));
has_change_outputs || has_other_outputs
}
/// Convert this list of actions into a [`TransactionPlan`].
pub fn into_plan<R: RngCore + CryptoRng>(
self,
rng: R,
fmd_params: &fmd::Parameters,
mut transaction_parameters: TransactionParameters,
memo_plan: Option<MemoPlan>,
) -> Result<TransactionPlan> {
transaction_parameters.fee = self.fee;
let mut plan = TransactionPlan {
actions: self
.actions
.into_iter()
.chain(self.change_outputs.into_values().map(Into::into))
.collect(),
transaction_parameters,
memo: memo_plan,
detection_data: None,
};
plan.populate_detection_data(rng, fmd_params.precision);
// Implement a canonical ordering to the actions within the transaction
// plan to reduce client distinguishability.
plan.sort_actions();
Ok(plan)
}
/// Push a new action onto this list.
pub fn push<A: Into<ActionPlan>>(&mut self, action: A) {
let plan = action.into();
// Special case: if the plan is a `SwapClaimPlan`, adjust the fee to include the
// prepaid fee contributed by the swap claim. This helps ensure that the value
// released by the swap claim is used to pay the fee, rather than generating change.
if let ActionPlan::SwapClaim(claim) = &plan {
let claim_fee = claim.swap_plaintext.claim_fee;
if self.fee.amount() == Amount::zero() {
// If the fee is currently zero, set it to the claim fee,
// regardless of fee token, i.e., set the fee token to match
// the swap claim.
self.fee = claim_fee;
} else if self.fee.asset_matches(&claim_fee) {
// Otherwise, if the fee token matches, accumulate the amount
// released by the swap claim into the fee, rather than letting it
// be handled as change.
self.fee.0.amount += claim_fee.amount();
} else {
// In this situation, the fee has been manually set to a
// different token than was released by the swap claim. So we
// can't accumulate the swap claim fee into it, and it will
// produce change instead.
}
}
self.actions.push(plan);
}
/// Compute the gas used by a transaction comprised of the actions in this list.
///
/// Because Penumbra transactions have static gas costs, and gas use is linear in the actions,
/// this is an exact computation.
fn gas_cost(&self) -> Gas {
let mut gas = Gas::zero();
for action in &self.actions {
// TODO missing AddAssign
gas = gas + action.gas_cost();
}
for action in self.change_outputs.values() {
// TODO missing AddAssign
// TODO missing GasCost impl on OutputPlan
gas = gas + ActionPlan::from(action.clone()).gas_cost();
}
gas
}
/// Use the provided gas prices and fee tier to estimate the fee for
/// the transaction.
///
/// While the gas cost can be computed exactly, the base fee can only be
/// estimated, because the actual base fee paid by the transaction will
/// depend on the gas prices at the time it's accepted on-chain.
fn compute_fee_estimate(&self, gas_prices: &GasPrices, fee_tier: &FeeTier) -> Fee {
let base_fee = gas_prices.fee(&self.gas_cost());
base_fee.apply_tier(*fee_tier)
}
/// Use the provided gas prices and fee tier to refresh the fee estimate for
/// the transaction.
///
/// If the current fee estimate is too low, it will be increased. In that
/// case, change notes will be adjusted to cover the increase if possible.
pub fn refresh_fee_and_change<R: RngCore + CryptoRng>(
&mut self,
rng: R,
gas_prices: &GasPrices,
fee_tier: &FeeTier,
change_address: &Address,
) {
// First, refresh the change outputs, to capture any surplus imbalance.
self.refresh_change(rng, &change_address);
// Next, recompute the fee estimate for the actions and change outputs.
let new_fee = self.compute_fee_estimate(gas_prices, fee_tier);
// Update the targeted fee with the new estimate.
if new_fee.asset_matches(&self.fee) {
// Take the max of the current fee and the new estimate. This ensures
// that if we already overpaid the fee for some reason, we don't lower it
// and cause the creation of unwanted change outputs.
self.fee.0.amount = std::cmp::max(self.fee.amount(), new_fee.amount());
} else {
// Otherwise, overwrite the previous fee with the new estimate.
self.fee = new_fee;
}
// Finally, adjust the change outputs to cover the fee increase if possible.
self.adjust_change_for_imbalance();
}
/// Return the balance of the actions in the list, without accounting for fees.
pub fn balance_without_fee(&self) -> Balance {
let mut balance = Balance::zero();
for action in &self.actions {
balance += action.balance();
}
for action in self.change_outputs.values() {
balance += action.balance();
}
balance
}
/// Return the balance of the actions in the list, minus the currently estimated fee
/// required to pay their gas costs.
pub fn balance_with_fee(&self) -> Balance {
self.balance_without_fee() - self.fee.0
}
/// Refresh the change notes used to store any surplus imbalance from the
/// actions in the list.
fn refresh_change<R: RngCore + CryptoRng>(&mut self, mut rng: R, change_address: &Address) {
self.change_outputs = BTreeMap::new();
// For each "provided" balance component, create a change note.
for value in self.balance_with_fee().provided() {
self.change_outputs.insert(
value.asset_id,
OutputPlan::new(&mut rng, value, change_address.clone()),
);
}
}
/// Attempt adjust existing change notes to repair imbalance:
///
/// - cover required balance by decreasing change if possible
/// - cover surplus balance by increasing change if possible
fn adjust_change_for_imbalance(&mut self) {
// We need to grab the current balance upfront before doing modifications.
let balance = self.balance_with_fee();
// Sweep surplus balance into existing change notes.
for provided in balance.provided() {
self.change_outputs
.entry(provided.asset_id)
.and_modify(|e| {
e.value.amount += provided.amount;
});
}
// Attempt to cover imbalance via existing change notes.
for required in balance.required() {
self.change_outputs
.entry(required.asset_id)
.and_modify(|e| {
// It's important to use saturating_sub here because
// our expectation is that we commonly won't have enough balance.
e.value.amount = e.value.amount.saturating_sub(&required.amount);
});
}
// Remove any 0-value change notes we might have created.
self.change_outputs
.retain(|_, output| output.value.amount > Amount::zero());
}
}