penumbra_tct/tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
use std::{
fmt::{Debug, Display},
sync::Arc,
};
use decaf377::Fq;
use penumbra_proto::{penumbra::crypto::tct::v1 as pb, DomainType};
use crate::error::*;
use crate::prelude::{Witness as _, *};
use crate::Witness;
#[path = "epoch.rs"]
pub(crate) mod epoch;
pub(crate) use epoch::block;
/// A sparse merkle tree witnessing up to 65,536 epochs of up to 65,536 blocks of up to 65,536
/// [`Commitment`]s.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Tree {
index: HashedMap<StateCommitment, index::within::Tree>,
inner: Arc<frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>>,
}
impl Default for Tree {
fn default() -> Self {
Self {
index: HashedMap::default(),
inner: Arc::new(frontier::Top::new(frontier::TrackForgotten::Yes)),
}
}
}
impl PartialEq for Tree {
fn eq(&self, other: &Tree) -> bool {
self.position() == other.position() // two trees could have identical contents but different positions
&& self.root() == other.root() // if the roots match, they represent the same commitments, but may witness different ones
&& self.index == other.index // we ensure they witness the same commitments by checking equality of indices
}
}
impl Eq for Tree {}
/// The root hash of a [`Tree`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
#[serde(try_from = "pb::MerkleRoot", into = "pb::MerkleRoot")]
#[cfg_attr(any(test, feature = "arbitrary"), derive(proptest_derive::Arbitrary))]
pub struct Root(pub Hash);
impl Root {
/// Check if this is the root of an empty tree.
pub fn is_empty(&self) -> bool {
self.0 == Hash::zero()
}
}
impl From<Root> for Fq {
fn from(root: Root) -> Self {
root.0.into()
}
}
/// An error occurred when decoding a tree root from bytes.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Error)]
#[error("could not decode tree root")]
pub struct RootDecodeError;
impl TryFrom<pb::MerkleRoot> for Root {
type Error = RootDecodeError;
fn try_from(root: pb::MerkleRoot) -> Result<Root, Self::Error> {
let bytes: [u8; 32] = (&root.inner[..]).try_into().map_err(|_| RootDecodeError)?;
let inner = Fq::from_bytes_checked(&bytes).map_err(|_| RootDecodeError)?;
Ok(Root(Hash::new(inner)))
}
}
impl From<Root> for pb::MerkleRoot {
fn from(root: Root) -> Self {
Self {
inner: Fq::from(root.0).to_bytes().to_vec(),
}
}
}
impl DomainType for Root {
type Proto = pb::MerkleRoot;
}
impl Display for Root {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", hex::encode(Fq::from(self.0).to_bytes()))
}
}
/// The index of a [`Commitment`] within a [`Tree`].
#[derive(
Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize, Default,
)]
#[cfg_attr(any(test, feature = "arbitrary"), derive(proptest_derive::Arbitrary))]
pub struct Position(index::within::Tree);
impl Position {
/// The index of the [`Commitment`] to which this [`Position`] refers within its own block.
pub fn commitment(&self) -> u16 {
self.0.commitment.into()
}
/// The index of the block to which this [`Position`] refers within its own epoch.
pub fn block(&self) -> u16 {
self.0.block.into()
}
/// The index of the epoch to which this [`Position`] refers within its [`Tree`].
pub fn epoch(&self) -> u16 {
self.0.epoch.into()
}
}
impl From<Position> for u64 {
fn from(position: Position) -> Self {
position.0.into()
}
}
impl From<u64> for Position {
fn from(position: u64) -> Self {
Position(position.into())
}
}
impl From<(u16, u16, u16)> for Position {
fn from((epoch, block, commitment): (u16, u16, u16)) -> Self {
Position(index::within::Tree {
epoch: epoch.into(),
block: block.into(),
commitment: commitment.into(),
})
}
}
impl From<Position> for (u16, u16, u16) {
fn from(position: Position) -> Self {
(position.epoch(), position.block(), position.commitment())
}
}
impl Tree {
/// Create a new empty [`Tree`] for storing all commitments to the end of time.
pub fn new() -> Self {
Self::default()
}
// Assemble a tree from its two parts without checking any invariants.
pub(crate) fn unchecked_from_parts(
index: HashedMap<StateCommitment, index::within::Tree>,
inner: frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>,
) -> Self {
Self {
index,
inner: Arc::new(inner),
}
}
/// Get the root hash of this [`Tree`].
///
/// Internal hashing is performed lazily to prevent unnecessary intermediary hashes from being
/// computed, so the first hash returned after a long sequence of insertions may take more time
/// than subsequent calls.
///
/// Computed hashes are cached so that subsequent calls without further modification are very
/// fast.
#[instrument(level = "trace", skip(self))]
pub fn root(&self) -> Root {
let root = Root(self.inner.hash());
trace!(?root);
root
}
/// Add a new [`Commitment`] to the most recent block of the most recent epoch of this [`Tree`].
///
/// If successful, returns the [`Position`] at which the commitment was inserted.
///
/// # Errors
///
/// Returns [`InsertError`] if any of:
///
/// - the [`Tree`] is full,
/// - the current epoch is full, or
/// - the current block is full.
#[instrument(level = "trace", skip(self))]
pub fn insert(
&mut self,
witness: Witness,
commitment: StateCommitment,
) -> Result<Position, InsertError> {
let item = match witness {
Witness::Keep => commitment.into(),
Witness::Forget => Hash::of(commitment).into(),
};
// Get the position of the insertion, if it would succeed
let position = (self.inner.position().ok_or(InsertError::Full)?).into();
// Try to insert the commitment into the latest block
Arc::make_mut(&mut self.inner)
.update(|epoch| {
epoch
.update(|block| {
// Don't insert into a finalized block (this will fail); create a new one
// instead (below)
if block.is_finalized() {
return None;
}
Some(block
.insert(item)
.map_err(|_| InsertError::BlockFull))
})
.flatten()
// If the latest block was finalized already or doesn't exist, create a new block and
// insert into that block
.or_else(|| {
// Don't insert into a finalized epoch (this will fail); create a new one
// instead (below)
if epoch.is_finalized() {
return None;
}
Some(epoch
.insert(frontier::Tier::new(item))
.map_err(|_| InsertError::EpochFull))
})
})
.flatten()
// If the latest epoch was finalized already or doesn't exist, create a new epoch and
// insert into that epoch
.unwrap_or_else(|| {
Arc::make_mut(&mut self.inner)
.insert(frontier::Tier::new(frontier::Tier::new(item)))
.expect("inserting a commitment must succeed because we already checked that the tree is not full");
Ok(())
})
.map_err(|error| {
error!(%error); error
})?;
// Keep track of the position of this just-inserted commitment in the index, if it was
// slated to be kept
if let Witness::Keep = witness {
if let Some(replaced) = self.index.insert(commitment, position) {
// This case is handled for completeness, but should not happen in
// practice because commitments should be unique
let forgotten = Arc::make_mut(&mut self.inner).forget(replaced);
debug_assert!(forgotten);
}
}
let position = Position(position);
trace!(?position);
Ok(position)
}
/// Get a [`Proof`] of inclusion for the commitment at this index in the tree.
///
/// If the index is not witnessed in this tree, return `None`.
#[instrument(level = "trace", skip(self))]
pub fn witness(&self, commitment: StateCommitment) -> Option<Proof> {
let &index = if let Some(index) = self.index.get(&commitment) {
index
} else {
trace!("not witnessed");
return None;
};
let (auth_path, leaf) = match self.inner.witness(index) {
Some(witness) => witness,
None => panic!(
"commitment `{commitment:?}` at position `{index:?}` must be witnessed because it is indexed"
),
};
debug_assert_eq!(leaf, Hash::of(commitment));
let proof = Proof(crate::internal::proof::Proof {
position: index.into(),
auth_path,
leaf: commitment,
});
trace!(?index, ?proof);
Some(proof)
}
/// Forget about the witness for the given [`Commitment`].
///
/// Returns `true` if the commitment was previously witnessed (and now is forgotten), and `false` if
/// it was not witnessed.
#[instrument(level = "trace", skip(self))]
pub fn forget(&mut self, commitment: StateCommitment) -> bool {
let mut forgotten = false;
if let Some(&within_epoch) = self.index.get(&commitment) {
// We forgot something
forgotten = true;
// Forget the index for this element in the tree
let forgotten = Arc::make_mut(&mut self.inner).forget(within_epoch);
debug_assert!(forgotten);
// Remove this entry from the index
self.index.remove(&commitment);
}
trace!(?forgotten);
forgotten
}
/// Get the position in this [`Tree`] of the given [`Commitment`], if it is currently witnessed.
#[instrument(level = "trace", skip(self))]
pub fn position_of(&self, commitment: StateCommitment) -> Option<Position> {
let position = self.index.get(&commitment).map(|index| Position(*index));
trace!(?position);
position
}
/// Add a new block all at once to the most recently inserted epoch of this [`Tree`], returning
/// the block root of the finalized block.
///
/// This can be used for two purposes:
///
/// 1. to insert a [`block::Root`] into the tree as a stand-in for an entire un-witnessed block,
/// or
/// 2. to insert a [`block::Builder`] into the tree that was constructed separately.
///
/// The latter [`block::Builder`] API only accelerates tree construction when used in parallel,
/// but the former [`block::Root`] insertion can be used to accelerate the construction of a
/// tree even in a single thread, because if the root is already known, only one set of hashes
/// need be performed, rather than performing hashing for each commitment in the block.
///
/// This function can be called on anything that implements `Into<block::Finalized>`, in
/// particular:
///
/// - [`block::Root`] (treated as a finalized block with no witnessed commitments).
/// - [`block::Builder`] (the block is finalized as it is inserted), and of course
/// - [`block::Finalized`].
///
/// # Errors
///
/// Returns [`InsertBlockError`] containing the inserted block without adding it to the [`Tree`]
/// if the [`Tree`] is full or the current epoch is full.
#[instrument(level = "trace", skip(self, block))]
pub fn insert_block(
&mut self,
block: impl Into<block::Finalized>,
) -> Result<block::Root, InsertBlockError> {
// We split apart the inside so that we get the right instrumentation when this is called as
// an inner function in `end_block`
let block_root = self.insert_block_uninstrumented(block).map_err(|error| {
error!(%error);
error
})?;
trace!(?block_root);
Ok(block_root)
}
fn insert_block_uninstrumented(
&mut self,
block: impl Into<block::Finalized>,
) -> Result<block::Root, InsertBlockError> {
let block::Finalized { inner, index } = block.into();
// Convert the top level inside of the block to a tier that can be slotted into the epoch
// We have this be an `Option` because we need to `take` out of it inside closures
let mut inner: Option<frontier::Tier<_>> = Some(match inner {
Insert::Keep(inner) => inner.into(),
Insert::Hash(hash) => hash.into(),
});
// We have this be an `Option` because we need to `take` out of it in closures
let mut index = Some(index);
// Finalize the latest block, if it exists and is not yet finalized -- this means that
// position calculations will be correct, since they will start at the next block
Arc::make_mut(&mut self.inner).update(|epoch| epoch.update(|block| block.finalize()));
// Get the epoch and block index of the next insertion
let position = self.inner.position();
// Insert the block into the latest epoch, or create a new epoch for it if the latest epoch
// does not exist or is finalized
let block_root = Arc::make_mut(&mut self.inner)
.update(|epoch| {
// If the epoch is finalized, create a new one (below) to insert the block into
if epoch.is_finalized() {
return None;
}
if epoch.is_full() {
// The current epoch would be full when we tried to insert into it
return Some(Err(InsertBlockError::EpochFull(block::Finalized {
inner: inner
.take()
.expect("inner option should be Some")
.finalize_owned()
.map(Into::into),
index: index.take().expect("index option should be Some"),
})));
}
// Get the inner thing from the `Option` storage
let inner = inner.take().expect("inner option should be Some");
// Calculate the block root
let block_root = block::Root(inner.hash());
epoch
.insert(inner)
.expect("inserting into the current epoch must succeed when it is not full");
Some(Ok(block_root))
})
.flatten()
.unwrap_or_else(|| {
if self.inner.is_full() {
return Err(InsertBlockError::Full(block::Finalized {
inner: inner
.take()
.expect("inner option should be Some")
.finalize_owned()
.map(Into::into),
index: index.take().expect("index option should be Some"),
}));
}
// Get the inner thing from the `Option` storage
let inner = inner.take().expect("inner option should be Some");
// Calculate the block root
let block_root = block::Root(inner.hash());
// Create a new epoch and insert the block into it
Arc::make_mut(&mut self.inner)
.insert(frontier::Tier::new(inner))
.expect("inserting a new epoch must succeed when the tree is not full");
Ok(block_root)
})?;
// Extract from the position we recorded earlier what the epoch/block indexes for each
// inserted commitment should be
let index::within::Tree { epoch, block, .. } = position
.expect("insertion succeeded so position must exist")
.into();
// Add the index of all commitments in the block to the global index
for (c, index::within::Block { commitment }) in
index.take().expect("index option should be Some")
{
// If any commitment is repeated, forget the previous one within the tree, since it is
// now inaccessible
if let Some(replaced) = self.index.insert(
c,
index::within::Tree {
epoch,
block,
commitment,
},
) {
// This case is handled for completeness, but should not happen in practice because
// commitments should be unique
let forgotten = Arc::make_mut(&mut self.inner).forget(replaced);
debug_assert!(forgotten);
}
}
Ok(block_root)
}
/// Explicitly mark the end of the current block in this tree, advancing the position to the
/// next block, and returning the root of the block which was just finalized.
#[instrument(level = "trace", skip(self))]
pub fn end_block(&mut self) -> Result<block::Root, InsertBlockError> {
// Check to see if the latest block is already finalized, and finalize it if
// it is not
let (already_finalized, finalized_root) = Arc::make_mut(&mut self.inner)
.update(|epoch| {
epoch.update(|tier| match tier.finalize() {
true => (true, block::Finalized::default().root()),
false => (false, block::Root(tier.hash())),
})
})
.flatten()
// If the entire tree or the latest epoch is empty or finalized, the latest block is
// considered already finalized
.unwrap_or((true, block::Finalized::default().root()));
// If the latest block was already finalized (i.e. we are at the start of an unfinalized
// empty block), insert an empty finalized block
if already_finalized {
self.insert_block_uninstrumented(block::Finalized::default())
.map_err(|error| {
error!(%error);
error
})?;
};
trace!(finalized_block_root = ?finalized_root);
Ok(finalized_root)
}
/// Get the root hash of the most recent block in the most recent epoch of this [`Tree`].
#[instrument(level = "trace", skip(self))]
pub fn current_block_root(&self) -> block::Root {
let root = self
.inner
.focus()
.and_then(|epoch| {
let block = epoch.focus()?;
if block.is_finalized() {
None
} else {
Some(block::Root(block.hash()))
}
})
// If there is no latest unfinalized block, we return the hash of the empty unfinalized block
.unwrap_or_else(|| block::Builder::default().root());
trace!(?root);
root
}
/// Add a new epoch all at once to this [`Tree`], returning the root of the finalized epoch
/// which was inserted.
///
/// This can be used for two purposes:
///
/// 1. to insert an [`epoch::Root`] into the tree as a stand-in for an entire un-witnessed block,
/// or
/// 2. to insert an [`epoch::Builder`] into the tree that was constructed separately.
///
/// The latter [`epoch::Builder`] API only accelerates tree construction when used in parallel,
/// but the former [`epoch::Root`] insertion can be used to accelerate the construction of a
/// tree even in a single thread, because if the root is already known, only one set of hashes
/// need be performed, rather than performing hashing for each commitment in the epoch.
///
/// This function can be called on anything that implements `Into<epoch::Finalized>`, in
/// particular:
///
/// - [`epoch::Root`] (treated as a finalized epoch with no witnessed commitments).
/// - [`epoch::Builder`] (the epoch is finalized as it is inserted), and of course
/// - [`epoch::Finalized`].
///
/// # Errors
///
/// Returns [`InsertEpochError`] containing the epoch without adding it to the [`Tree`] if the
/// [`Tree`] is full.
#[instrument(level = "trace", skip(self, epoch))]
pub fn insert_epoch(
&mut self,
epoch: impl Into<epoch::Finalized>,
) -> Result<epoch::Root, InsertEpochError> {
// We split apart the inside so that we get the right instrumention when this is called as
// an inner function in `end_epoch`
let epoch_root = self.insert_epoch_uninstrumented(epoch).map_err(|error| {
error!(%error);
error
})?;
trace!(?epoch_root);
Ok(epoch_root)
}
fn insert_epoch_uninstrumented(
&mut self,
epoch: impl Into<epoch::Finalized>,
) -> Result<epoch::Root, InsertEpochError> {
let epoch::Finalized { inner, index } = epoch.into();
// If the insertion would fail, return an error
if self.inner.is_full() {
// There is no room for another epoch to be inserted into the tree
return Err(InsertEpochError(epoch::Finalized { inner, index }));
}
// Convert the top level inside of the epoch to a tier that can be slotted into the tree
let inner: frontier::Tier<frontier::Tier<frontier::Item>> = match inner {
Insert::Keep(inner) => inner.into(),
Insert::Hash(hash) => hash.into(),
};
// Finalize the latest epoch, if it exists and is not yet finalized -- this means that
// position calculations will be correct, since they will start at the next epoch
Arc::make_mut(&mut self.inner).update(|epoch| epoch.finalize());
// Get the epoch index of the next insertion
let index::within::Tree { epoch, .. } = self
.inner
.position()
.expect("tree must have a position because it is not full")
.into();
// Calculate the root of the finalized epoch we're about to insert
let epoch_root = epoch::Root(inner.hash());
// Insert the inner tree of the epoch into the global tree
Arc::make_mut(&mut self.inner)
.insert(inner)
.expect("inserting an epoch must succeed when tree is not full");
// Add the index of all commitments in the epoch to the global tree index
for (c, index::within::Epoch { block, commitment }) in index {
// If any commitment is repeated, forget the previous one within the tree, since it is
// now inaccessible
if let Some(replaced) = self.index.insert(
c,
index::within::Tree {
epoch,
block,
commitment,
},
) {
// This case is handled for completeness, but should not happen in practice because
// commitments should be unique
let forgotten = Arc::make_mut(&mut self.inner).forget(replaced);
debug_assert!(forgotten);
}
}
Ok(epoch_root)
}
/// Explicitly mark the end of the current epoch in this tree, advancing the position to the
/// next epoch, and returning the root of the epoch which was just finalized.
#[instrument(level = "trace", skip(self))]
pub fn end_epoch(&mut self) -> Result<epoch::Root, InsertEpochError> {
// Check to see if the latest block is already finalized, and finalize it if
// it is not
let (already_finalized, finalized_root) = Arc::make_mut(&mut self.inner)
.update(|tier| match tier.finalize() {
true => (true, epoch::Finalized::default().root()),
false => (false, epoch::Root(tier.hash())),
})
// If there is no focused block, the latest block is considered already finalized
.unwrap_or((true, epoch::Finalized::default().root()));
// If the latest block was already finalized (i.e. we are at the start of an unfinalized
// empty block), insert an empty finalized block
if already_finalized {
self.insert_epoch_uninstrumented(epoch::Finalized::default())
.map_err(|error| {
error!(%error);
error
})?;
};
trace!(finalized_epoch_root = ?finalized_root);
Ok(finalized_root)
}
/// Get the root hash of the most recent epoch in this [`Tree`].
#[instrument(level = "trace", skip(self))]
pub fn current_epoch_root(&self) -> epoch::Root {
let root = self
.inner
.focus()
.and_then(|epoch| {
if epoch.is_finalized() {
None
} else {
Some(epoch::Root(epoch.hash()))
}
})
// In the case where there is no latest unfinalized epoch, we return the hash of the
// empty unfinalized epoch
.unwrap_or_else(|| epoch::Builder::default().root());
trace!(?root);
root
}
/// The position in this [`Tree`] at which the next [`Commitment`] would be inserted.
///
/// If the [`Tree`] is full, returns `None`.
///
/// The maximum capacity of a [`Tree`] is 281,474,976,710,656 = 65,536 epochs of 65,536
/// blocks of 65,536 [`Commitment`]s.
///
/// Note that [`forget`](Tree::forget)ting a commitment does not decrease this; it only
/// decreases the [`witnessed_count`](Tree::witnessed_count).
#[instrument(level = "trace", skip(self))]
pub fn position(&self) -> Option<Position> {
let position = self.inner.position().map(|p| Position(p.into()));
trace!(?position);
position
}
/// The count of how many commitments have been forgotten explicitly using
/// [`forget`](Tree::forget), or implicitly by being overwritten by a subsequent insertion of
/// the _same_ commitment (this case is rare in practice).
///
/// This does not include commitments that were inserted using [`Witness::Forget`], only those
/// forgotten subsequent to their insertion.
#[instrument(level = "trace", skip(self))]
pub fn forgotten(&self) -> Forgotten {
let forgotten = self
.inner
.forgotten()
.expect("inner `Top` of `Tree` must always be in forgotten-tracking mode");
trace!(?forgotten);
forgotten
}
/// The number of [`Commitment`]s currently witnessed in this [`Tree`].
///
/// Note that [`forget`](Tree::forget)ting a commitment decreases this count, but does not
/// decrease the [`position`](Tree::position) of the next inserted [`Commitment`].
#[instrument(level = "trace", skip(self))]
pub fn witnessed_count(&self) -> usize {
let count = self.index.len();
trace!(?count);
count
}
/// Check whether this [`Tree`] is empty.
#[instrument(level = "trace", skip(self))]
pub fn is_empty(&self) -> bool {
let is_empty = self.inner.is_empty();
trace!(?is_empty);
is_empty
}
/// Get an iterator over all commitments currently witnessed in the tree, **ordered by
/// position**.
///
/// Unlike [`commitments_unordered`](Tree::commitments_unordered), this guarantees that
/// commitments will be returned in order, but it may be slower by a constant factor.
#[instrument(level = "trace", skip(self))]
pub fn commitments(
&self,
) -> impl Iterator<Item = (Position, StateCommitment)> + Send + Sync + '_ {
crate::storage::serialize::Serializer::default().commitments(self)
}
/// Get an iterator over all commitments currently witnessed in the tree.
///
/// Unlike [`commitments`](Tree::commitments), this **does not** guarantee that commitments will
/// be returned in order, but it may be faster by a constant factor.
#[instrument(level = "trace", skip(self))]
pub fn commitments_unordered(
&self,
) -> impl Iterator<Item = (StateCommitment, Position)> + Send + Sync + '_ {
self.index.iter().map(|(c, p)| (*c, Position(*p)))
}
/// Get a dynamic representation of the internal structure of the tree, which can be traversed
/// and inspected arbitrarily.
pub fn structure(&self) -> structure::Node {
let _structure_span = trace_span!("structure");
// TODO: use the structure span for instrumenting methods of the structure, as it is traversed
Node::root(&*self.inner)
}
/// Deserialize a tree from a [`storage::Read`] of its contents, without checking for internal
/// consistency.
///
/// This can be more convenient than [`Tree::load`], since it is able to internally query the
/// storage for the last position and forgotten count.
///
/// ⚠️ **WARNING:** Do not deserialize trees you did not serialize yourself, or risk violating
/// internal invariants.
pub fn from_reader<R: Read>(reader: &mut R) -> Result<Tree, R::Error> {
storage::deserialize::from_reader(reader)
}
/// Serialize the tree incrementally from the last stored [`Position`] and [`Forgotten`]
/// specified, into a [`storage::Write`], performing only the operations necessary to serialize
/// the changes to the tree.
///
/// This can be more convenient than using [`Tree::updates`], because it is able to internally
/// query the storage for the last position and forgotten count, and drive the storage
/// operations itself.
pub fn to_writer<W: Write>(&self, writer: &mut W) -> Result<(), W::Error> {
storage::serialize::to_writer(writer, self)
}
/// Deserialize a tree from a [`storage::AsyncRead`] of its contents, without checking for
/// internal consistency.
///
/// This can be more convenient than [`Tree::load`], since it is able to internally query the
/// storage for the last position and forgotten count.
///
/// ⚠️ **WARNING:** Do not deserialize trees you did not serialize yourself, or risk violating
/// internal invariants.
pub async fn from_async_reader<R: AsyncRead>(reader: &mut R) -> Result<Tree, R::Error> {
storage::deserialize::from_async_reader(reader).await
}
/// Serialize the tree incrementally from the last stored [`Position`] and [`Forgotten`]
/// specified, into a [`storage::AsyncWrite`], performing only the operations necessary to
/// serialize the changes to the tree.
///
/// This can be more convenient than using [`Tree::updates`], because it is able to internally
/// query the storage for the last position and forgotten count, and drive the storage
/// operations itself.
pub async fn to_async_writer<W: AsyncWrite>(&self, writer: &mut W) -> Result<(), W::Error> {
storage::serialize::to_async_writer(writer, self).await
}
/// Deserialize a tree using externally driven iteration, without checking for internal
/// consistency.
///
/// Reconstructing a [`Tree`] using this method requires stepping through a series of states, as
/// follows:
///
/// 1. [`Tree::load`] returns an object [`LoadCommitments`](storage::LoadCommitments) which can
/// be used to [`insert`](storage::LoadCommitments::insert) positioned commitments.
/// 2. When all commitments have been inserted, call
/// [`.load_hashes()`](storage::LoadCommitments::load_hashes) to get an object
/// [`LoadHashes`](storage::LoadHashes).
/// 3. [`LoadHashes`](storage::LoadHashes) can be used to
/// [`insert`](storage::LoadHashes::insert) positioned, heighted hashes.
/// 4. Finally, call [`.finish()`](storage::LoadHashes::finish) on the
/// [`LoadHashes`](storage::LoadHashes) to get the [`Tree`].
///
/// ⚠️ **WARNING:** Do not deserialize trees you did not serialize yourself, or risk violating
/// internal invariants. You *must* insert all the commitments and hashes corresponding to the
/// stored tree, or the reconstructed tree will not match what was serialized, and further, it
/// may have internal inconsistencies that will mean that the proofs it produces will not
/// verify.
///
/// ℹ️ **NOTE:** You may prefer to use [`from_reader`](Tree::from_reader) or
/// [`from_async_reader`](Tree::from_async_reader), which drive the iteration over the
/// underlying storage *internally* rather than requiring the caller to drive the iteration.
/// [`Tree::load`] is predominanly useful in circumstances when this inversion of control does
/// not make sense.
pub fn load(
last_position: impl Into<StoredPosition>,
last_forgotten: Forgotten,
) -> storage::deserialize::LoadCommitments {
storage::deserialize::LoadCommitments::new(last_position, last_forgotten)
}
/// Serialize the tree incrementally from the last stored [`Position`] and [`Forgotten`]
/// specified, into an iterator of [`storage::Update`]s.
///
/// This returns only the operations necessary to serialize the changes to the tree,
/// synchronizing the in-memory representation with what is stored.
///
/// The iterator of updates may be [`.collect()`](Iterator::collect)ed into a
/// [`storage::Updates`], which is more compact in-memory than
/// [`.collect()`](Iterator::collect)ing into a [`Vec<Update>`](Vec).
///
/// ℹ️ **NOTE:** You may prefer to use [`to_writer`](Tree::to_writer) or
/// [`to_async_writer`](Tree::to_async_writer), which drive the operations on the underlying
/// storage *internally* rather than requiring the caller to drive iteration. [`Tree::updates`]
/// is predominantly useful in circumstances when this inversion of control does not make sense.
pub fn updates(
&self,
last_position: impl Into<StoredPosition>,
last_forgotten: Forgotten,
) -> impl Iterator<Item = Update> + Send + Sync + '_ {
storage::serialize::updates(last_position.into(), last_forgotten, self)
}
}
impl From<frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>> for Tree {
fn from(inner: frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>) -> Self {
let mut index = HashedMap::default();
// Traverse the tree to reconstruct the index
let mut stack = vec![Node::root(&inner)];
while let Some(node) = stack.pop() {
stack.extend(node.children());
if let structure::Kind::Leaf {
commitment: Some(commitment),
} = node.kind()
{
index.insert(commitment, node.position().0);
}
}
Self {
inner: Arc::new(inner),
index,
}
}
}