penumbra_tct/
tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
use std::{
    fmt::{Debug, Display},
    sync::Arc,
};

use decaf377::Fq;
use penumbra_proto::{penumbra::crypto::tct::v1 as pb, DomainType};

use crate::error::*;
use crate::prelude::{Witness as _, *};
use crate::Witness;

#[path = "epoch.rs"]
pub(crate) mod epoch;
pub(crate) use epoch::block;

/// A sparse merkle tree witnessing up to 65,536 epochs of up to 65,536 blocks of up to 65,536
/// [`Commitment`]s.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Tree {
    index: HashedMap<StateCommitment, index::within::Tree>,
    inner: Arc<frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>>,
}

impl Default for Tree {
    fn default() -> Self {
        Self {
            index: HashedMap::default(),
            inner: Arc::new(frontier::Top::new(frontier::TrackForgotten::Yes)),
        }
    }
}

impl PartialEq for Tree {
    fn eq(&self, other: &Tree) -> bool {
        self.position() == other.position() // two trees could have identical contents but different positions
            && self.root() == other.root() // if the roots match, they represent the same commitments, but may witness different ones
            && self.index == other.index // we ensure they witness the same commitments by checking equality of indices
    }
}

impl Eq for Tree {}

/// The root hash of a [`Tree`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
#[serde(try_from = "pb::MerkleRoot", into = "pb::MerkleRoot")]
#[cfg_attr(any(test, feature = "arbitrary"), derive(proptest_derive::Arbitrary))]
pub struct Root(pub Hash);

impl Root {
    /// Check if this is the root of an empty tree.
    pub fn is_empty(&self) -> bool {
        self.0 == Hash::zero()
    }
}

impl From<Root> for Fq {
    fn from(root: Root) -> Self {
        root.0.into()
    }
}

/// An error occurred when decoding a tree root from bytes.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Error)]
#[error("could not decode tree root")]
pub struct RootDecodeError;

impl TryFrom<pb::MerkleRoot> for Root {
    type Error = RootDecodeError;

    fn try_from(root: pb::MerkleRoot) -> Result<Root, Self::Error> {
        let bytes: [u8; 32] = (&root.inner[..]).try_into().map_err(|_| RootDecodeError)?;
        let inner = Fq::from_bytes_checked(&bytes).map_err(|_| RootDecodeError)?;
        Ok(Root(Hash::new(inner)))
    }
}

impl From<Root> for pb::MerkleRoot {
    fn from(root: Root) -> Self {
        Self {
            inner: Fq::from(root.0).to_bytes().to_vec(),
        }
    }
}

impl DomainType for Root {
    type Proto = pb::MerkleRoot;
}

impl Display for Root {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", hex::encode(Fq::from(self.0).to_bytes()))
    }
}

/// The index of a [`Commitment`] within a [`Tree`].
#[derive(
    Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize, Default,
)]
#[cfg_attr(any(test, feature = "arbitrary"), derive(proptest_derive::Arbitrary))]
pub struct Position(index::within::Tree);

impl Position {
    /// The index of the [`Commitment`] to which this [`Position`] refers within its own block.
    pub fn commitment(&self) -> u16 {
        self.0.commitment.into()
    }

    /// The index of the block to which this [`Position`] refers within its own epoch.
    pub fn block(&self) -> u16 {
        self.0.block.into()
    }

    /// The index of the epoch to which this [`Position`] refers within its [`Tree`].
    pub fn epoch(&self) -> u16 {
        self.0.epoch.into()
    }
}

impl From<Position> for u64 {
    fn from(position: Position) -> Self {
        position.0.into()
    }
}

impl From<u64> for Position {
    fn from(position: u64) -> Self {
        Position(position.into())
    }
}

impl From<(u16, u16, u16)> for Position {
    fn from((epoch, block, commitment): (u16, u16, u16)) -> Self {
        Position(index::within::Tree {
            epoch: epoch.into(),
            block: block.into(),
            commitment: commitment.into(),
        })
    }
}

impl From<Position> for (u16, u16, u16) {
    fn from(position: Position) -> Self {
        (position.epoch(), position.block(), position.commitment())
    }
}

impl Tree {
    /// Create a new empty [`Tree`] for storing all commitments to the end of time.
    pub fn new() -> Self {
        Self::default()
    }

    // Assemble a tree from its two parts without checking any invariants.
    pub(crate) fn unchecked_from_parts(
        index: HashedMap<StateCommitment, index::within::Tree>,
        inner: frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>,
    ) -> Self {
        Self {
            index,
            inner: Arc::new(inner),
        }
    }

    /// Get the root hash of this [`Tree`].
    ///
    /// Internal hashing is performed lazily to prevent unnecessary intermediary hashes from being
    /// computed, so the first hash returned after a long sequence of insertions may take more time
    /// than subsequent calls.
    ///
    /// Computed hashes are cached so that subsequent calls without further modification are very
    /// fast.
    #[instrument(level = "trace", skip(self))]
    pub fn root(&self) -> Root {
        let root = Root(self.inner.hash());
        trace!(?root);
        root
    }

    /// Add a new [`Commitment`] to the most recent block of the most recent epoch of this [`Tree`].
    ///
    /// If successful, returns the [`Position`] at which the commitment was inserted.
    ///
    /// # Errors
    ///
    /// Returns [`InsertError`] if any of:
    ///
    /// - the [`Tree`] is full,
    /// - the current epoch is full, or
    /// - the current block is full.
    #[instrument(level = "trace", skip(self))]
    pub fn insert(
        &mut self,
        witness: Witness,
        commitment: StateCommitment,
    ) -> Result<Position, InsertError> {
        let item = match witness {
            Witness::Keep => commitment.into(),
            Witness::Forget => Hash::of(commitment).into(),
        };

        // Get the position of the insertion, if it would succeed
        let position = (self.inner.position().ok_or(InsertError::Full)?).into();

        // Try to insert the commitment into the latest block
        Arc::make_mut(&mut self.inner)
            .update(|epoch| {
                epoch
                    .update(|block| {
                        // Don't insert into a finalized block (this will fail); create a new one
                        // instead (below)
                        if block.is_finalized() {
                            return None;
                        }

                        Some(block
                            .insert(item)
                            .map_err(|_| InsertError::BlockFull))
                    })
                    .flatten()
                    // If the latest block was finalized already or doesn't exist, create a new block and
                    // insert into that block
                    .or_else(|| {
                        // Don't insert into a finalized epoch (this will fail); create a new one
                        // instead (below)
                        if epoch.is_finalized() {
                            return None;
                        }

                        Some(epoch
                            .insert(frontier::Tier::new(item))
                            .map_err(|_| InsertError::EpochFull))
                    })
            })
            .flatten()
            // If the latest epoch was finalized already or doesn't exist, create a new epoch and
            // insert into that epoch
            .unwrap_or_else(|| {
                Arc::make_mut(&mut self.inner)
                    .insert(frontier::Tier::new(frontier::Tier::new(item)))
                    .expect("inserting a commitment must succeed because we already checked that the tree is not full");
                Ok(())
            })
            .map_err(|error| {
                error!(%error); error
            })?;

        // Keep track of the position of this just-inserted commitment in the index, if it was
        // slated to be kept
        if let Witness::Keep = witness {
            if let Some(replaced) = self.index.insert(commitment, position) {
                // This case is handled for completeness, but should not happen in
                // practice because commitments should be unique
                let forgotten = Arc::make_mut(&mut self.inner).forget(replaced);
                debug_assert!(forgotten);
            }
        }

        let position = Position(position);
        trace!(?position);
        Ok(position)
    }

    /// Get a [`Proof`] of inclusion for the commitment at this index in the tree.
    ///
    /// If the index is not witnessed in this tree, return `None`.
    #[instrument(level = "trace", skip(self))]
    pub fn witness(&self, commitment: StateCommitment) -> Option<Proof> {
        let &index = if let Some(index) = self.index.get(&commitment) {
            index
        } else {
            trace!("not witnessed");
            return None;
        };

        let (auth_path, leaf) = match self.inner.witness(index) {
            Some(witness) => witness,
            None => panic!(
                "commitment `{commitment:?}` at position `{index:?}` must be witnessed because it is indexed"
            ),
        };

        debug_assert_eq!(leaf, Hash::of(commitment));

        let proof = Proof(crate::internal::proof::Proof {
            position: index.into(),
            auth_path,
            leaf: commitment,
        });

        trace!(?index, ?proof);
        Some(proof)
    }

    /// Forget about the witness for the given [`Commitment`].
    ///
    /// Returns `true` if the commitment was previously witnessed (and now is forgotten), and `false` if
    /// it was not witnessed.
    #[instrument(level = "trace", skip(self))]
    pub fn forget(&mut self, commitment: StateCommitment) -> bool {
        let mut forgotten = false;

        if let Some(&within_epoch) = self.index.get(&commitment) {
            // We forgot something
            forgotten = true;
            // Forget the index for this element in the tree
            let forgotten = Arc::make_mut(&mut self.inner).forget(within_epoch);
            debug_assert!(forgotten);
            // Remove this entry from the index
            self.index.remove(&commitment);
        }

        trace!(?forgotten);
        forgotten
    }

    /// Get the position in this [`Tree`] of the given [`Commitment`], if it is currently witnessed.
    #[instrument(level = "trace", skip(self))]
    pub fn position_of(&self, commitment: StateCommitment) -> Option<Position> {
        let position = self.index.get(&commitment).map(|index| Position(*index));
        trace!(?position);
        position
    }

    /// Add a new block all at once to the most recently inserted epoch of this [`Tree`], returning
    /// the block root of the finalized block.
    ///
    /// This can be used for two purposes:
    ///
    /// 1. to insert a [`block::Root`] into the tree as a stand-in for an entire un-witnessed block,
    ///    or
    /// 2. to insert a [`block::Builder`] into the tree that was constructed separately.
    ///
    /// The latter [`block::Builder`] API only accelerates tree construction when used in parallel,
    /// but the former [`block::Root`] insertion can be used to accelerate the construction of a
    /// tree even in a single thread, because if the root is already known, only one set of hashes
    /// need be performed, rather than performing hashing for each commitment in the block.
    ///
    /// This function can be called on anything that implements `Into<block::Finalized>`, in
    /// particular:
    ///
    /// - [`block::Root`] (treated as a finalized block with no witnessed commitments).
    /// - [`block::Builder`] (the block is finalized as it is inserted), and of course
    /// - [`block::Finalized`].
    ///
    /// # Errors
    ///
    /// Returns [`InsertBlockError`] containing the inserted block without adding it to the [`Tree`]
    /// if the [`Tree`] is full or the current epoch is full.
    #[instrument(level = "trace", skip(self, block))]
    pub fn insert_block(
        &mut self,
        block: impl Into<block::Finalized>,
    ) -> Result<block::Root, InsertBlockError> {
        // We split apart the inside so that we get the right instrumentation when this is called as
        // an inner function in `end_block`
        let block_root = self.insert_block_uninstrumented(block).map_err(|error| {
            error!(%error);
            error
        })?;
        trace!(?block_root);
        Ok(block_root)
    }

    fn insert_block_uninstrumented(
        &mut self,
        block: impl Into<block::Finalized>,
    ) -> Result<block::Root, InsertBlockError> {
        let block::Finalized { inner, index } = block.into();

        // Convert the top level inside of the block to a tier that can be slotted into the epoch
        // We have this be an `Option` because we need to `take` out of it inside closures
        let mut inner: Option<frontier::Tier<_>> = Some(match inner {
            Insert::Keep(inner) => inner.into(),
            Insert::Hash(hash) => hash.into(),
        });

        // We have this be an `Option` because we need to `take` out of it in closures
        let mut index = Some(index);

        // Finalize the latest block, if it exists and is not yet finalized -- this means that
        // position calculations will be correct, since they will start at the next block
        Arc::make_mut(&mut self.inner).update(|epoch| epoch.update(|block| block.finalize()));

        // Get the epoch and block index of the next insertion
        let position = self.inner.position();

        // Insert the block into the latest epoch, or create a new epoch for it if the latest epoch
        // does not exist or is finalized
        let block_root = Arc::make_mut(&mut self.inner)
            .update(|epoch| {
                // If the epoch is finalized, create a new one (below) to insert the block into
                if epoch.is_finalized() {
                    return None;
                }

                if epoch.is_full() {
                    // The current epoch would be full when we tried to insert into it
                    return Some(Err(InsertBlockError::EpochFull(block::Finalized {
                        inner: inner
                            .take()
                            .expect("inner option should be Some")
                            .finalize_owned()
                            .map(Into::into),
                        index: index.take().expect("index option should be Some"),
                    })));
                }

                // Get the inner thing from the `Option` storage
                let inner = inner.take().expect("inner option should be Some");

                // Calculate the block root
                let block_root = block::Root(inner.hash());

                epoch
                    .insert(inner)
                    .expect("inserting into the current epoch must succeed when it is not full");

                Some(Ok(block_root))
            })
            .flatten()
            .unwrap_or_else(|| {
                if self.inner.is_full() {
                    return Err(InsertBlockError::Full(block::Finalized {
                        inner: inner
                            .take()
                            .expect("inner option should be Some")
                            .finalize_owned()
                            .map(Into::into),
                        index: index.take().expect("index option should be Some"),
                    }));
                }

                // Get the inner thing from the `Option` storage
                let inner = inner.take().expect("inner option should be Some");

                // Calculate the block root
                let block_root = block::Root(inner.hash());

                // Create a new epoch and insert the block into it
                Arc::make_mut(&mut self.inner)
                    .insert(frontier::Tier::new(inner))
                    .expect("inserting a new epoch must succeed when the tree is not full");

                Ok(block_root)
            })?;

        // Extract from the position we recorded earlier what the epoch/block indexes for each
        // inserted commitment should be
        let index::within::Tree { epoch, block, .. } = position
            .expect("insertion succeeded so position must exist")
            .into();

        // Add the index of all commitments in the block to the global index
        for (c, index::within::Block { commitment }) in
            index.take().expect("index option should be Some")
        {
            // If any commitment is repeated, forget the previous one within the tree, since it is
            // now inaccessible
            if let Some(replaced) = self.index.insert(
                c,
                index::within::Tree {
                    epoch,
                    block,
                    commitment,
                },
            ) {
                // This case is handled for completeness, but should not happen in practice because
                // commitments should be unique
                let forgotten = Arc::make_mut(&mut self.inner).forget(replaced);
                debug_assert!(forgotten);
            }
        }

        Ok(block_root)
    }

    /// Explicitly mark the end of the current block in this tree, advancing the position to the
    /// next block, and returning the root of the block which was just finalized.
    #[instrument(level = "trace", skip(self))]
    pub fn end_block(&mut self) -> Result<block::Root, InsertBlockError> {
        // Check to see if the latest block is already finalized, and finalize it if
        // it is not
        let (already_finalized, finalized_root) = Arc::make_mut(&mut self.inner)
            .update(|epoch| {
                epoch.update(|tier| match tier.finalize() {
                    true => (true, block::Finalized::default().root()),
                    false => (false, block::Root(tier.hash())),
                })
            })
            .flatten()
            // If the entire tree or the latest epoch is empty or finalized, the latest block is
            // considered already finalized
            .unwrap_or((true, block::Finalized::default().root()));

        // If the latest block was already finalized (i.e. we are at the start of an unfinalized
        // empty block), insert an empty finalized block
        if already_finalized {
            self.insert_block_uninstrumented(block::Finalized::default())
                .map_err(|error| {
                    error!(%error);
                    error
                })?;
        };

        trace!(finalized_block_root = ?finalized_root);
        Ok(finalized_root)
    }

    /// Get the root hash of the most recent block in the most recent epoch of this [`Tree`].
    #[instrument(level = "trace", skip(self))]
    pub fn current_block_root(&self) -> block::Root {
        let root = self
            .inner
            .focus()
            .and_then(|epoch| {
                let block = epoch.focus()?;
                if block.is_finalized() {
                    None
                } else {
                    Some(block::Root(block.hash()))
                }
            })
            // If there is no latest unfinalized block, we return the hash of the empty unfinalized block
            .unwrap_or_else(|| block::Builder::default().root());
        trace!(?root);
        root
    }

    /// Add a new epoch all at once to this [`Tree`], returning the root of the finalized epoch
    /// which was inserted.
    ///
    /// This can be used for two purposes:
    ///
    /// 1. to insert an [`epoch::Root`] into the tree as a stand-in for an entire un-witnessed block,
    ///    or
    /// 2. to insert an [`epoch::Builder`] into the tree that was constructed separately.
    ///
    /// The latter [`epoch::Builder`] API only accelerates tree construction when used in parallel,
    /// but the former [`epoch::Root`] insertion can be used to accelerate the construction of a
    /// tree even in a single thread, because if the root is already known, only one set of hashes
    /// need be performed, rather than performing hashing for each commitment in the epoch.
    ///
    /// This function can be called on anything that implements `Into<epoch::Finalized>`, in
    /// particular:
    ///
    /// - [`epoch::Root`] (treated as a finalized epoch with no witnessed commitments).
    /// - [`epoch::Builder`] (the epoch is finalized as it is inserted), and of course
    /// - [`epoch::Finalized`].
    ///
    /// # Errors
    ///
    /// Returns [`InsertEpochError`] containing the epoch without adding it to the [`Tree`] if the
    /// [`Tree`] is full.
    #[instrument(level = "trace", skip(self, epoch))]
    pub fn insert_epoch(
        &mut self,
        epoch: impl Into<epoch::Finalized>,
    ) -> Result<epoch::Root, InsertEpochError> {
        // We split apart the inside so that we get the right instrumention when this is called as
        // an inner function in `end_epoch`
        let epoch_root = self.insert_epoch_uninstrumented(epoch).map_err(|error| {
            error!(%error);
            error
        })?;
        trace!(?epoch_root);
        Ok(epoch_root)
    }

    fn insert_epoch_uninstrumented(
        &mut self,
        epoch: impl Into<epoch::Finalized>,
    ) -> Result<epoch::Root, InsertEpochError> {
        let epoch::Finalized { inner, index } = epoch.into();

        // If the insertion would fail, return an error
        if self.inner.is_full() {
            // There is no room for another epoch to be inserted into the tree
            return Err(InsertEpochError(epoch::Finalized { inner, index }));
        }

        // Convert the top level inside of the epoch to a tier that can be slotted into the tree
        let inner: frontier::Tier<frontier::Tier<frontier::Item>> = match inner {
            Insert::Keep(inner) => inner.into(),
            Insert::Hash(hash) => hash.into(),
        };

        // Finalize the latest epoch, if it exists and is not yet finalized -- this means that
        // position calculations will be correct, since they will start at the next epoch
        Arc::make_mut(&mut self.inner).update(|epoch| epoch.finalize());

        // Get the epoch index of the next insertion
        let index::within::Tree { epoch, .. } = self
            .inner
            .position()
            .expect("tree must have a position because it is not full")
            .into();

        // Calculate the root of the finalized epoch we're about to insert
        let epoch_root = epoch::Root(inner.hash());

        // Insert the inner tree of the epoch into the global tree
        Arc::make_mut(&mut self.inner)
            .insert(inner)
            .expect("inserting an epoch must succeed when tree is not full");

        // Add the index of all commitments in the epoch to the global tree index
        for (c, index::within::Epoch { block, commitment }) in index {
            // If any commitment is repeated, forget the previous one within the tree, since it is
            // now inaccessible
            if let Some(replaced) = self.index.insert(
                c,
                index::within::Tree {
                    epoch,
                    block,
                    commitment,
                },
            ) {
                // This case is handled for completeness, but should not happen in practice because
                // commitments should be unique
                let forgotten = Arc::make_mut(&mut self.inner).forget(replaced);
                debug_assert!(forgotten);
            }
        }

        Ok(epoch_root)
    }

    /// Explicitly mark the end of the current epoch in this tree, advancing the position to the
    /// next epoch, and returning the root of the epoch which was just finalized.
    #[instrument(level = "trace", skip(self))]
    pub fn end_epoch(&mut self) -> Result<epoch::Root, InsertEpochError> {
        // Check to see if the latest block is already finalized, and finalize it if
        // it is not
        let (already_finalized, finalized_root) = Arc::make_mut(&mut self.inner)
            .update(|tier| match tier.finalize() {
                true => (true, epoch::Finalized::default().root()),
                false => (false, epoch::Root(tier.hash())),
            })
            // If there is no focused block, the latest block is considered already finalized
            .unwrap_or((true, epoch::Finalized::default().root()));

        // If the latest block was already finalized (i.e. we are at the start of an unfinalized
        // empty block), insert an empty finalized block
        if already_finalized {
            self.insert_epoch_uninstrumented(epoch::Finalized::default())
                .map_err(|error| {
                    error!(%error);
                    error
                })?;
        };

        trace!(finalized_epoch_root = ?finalized_root);
        Ok(finalized_root)
    }

    /// Get the root hash of the most recent epoch in this [`Tree`].
    #[instrument(level = "trace", skip(self))]
    pub fn current_epoch_root(&self) -> epoch::Root {
        let root = self
            .inner
            .focus()
            .and_then(|epoch| {
                if epoch.is_finalized() {
                    None
                } else {
                    Some(epoch::Root(epoch.hash()))
                }
            })
            // In the case where there is no latest unfinalized epoch, we return the hash of the
            // empty unfinalized epoch
            .unwrap_or_else(|| epoch::Builder::default().root());
        trace!(?root);
        root
    }

    /// The position in this [`Tree`] at which the next [`Commitment`] would be inserted.
    ///
    /// If the [`Tree`] is full, returns `None`.
    ///
    /// The maximum capacity of a [`Tree`] is 281,474,976,710,656 = 65,536 epochs of 65,536
    /// blocks of 65,536 [`Commitment`]s.
    ///
    /// Note that [`forget`](Tree::forget)ting a commitment does not decrease this; it only
    /// decreases the [`witnessed_count`](Tree::witnessed_count).
    #[instrument(level = "trace", skip(self))]
    pub fn position(&self) -> Option<Position> {
        let position = self.inner.position().map(|p| Position(p.into()));
        trace!(?position);
        position
    }

    /// The count of how many commitments have been forgotten explicitly using
    /// [`forget`](Tree::forget), or implicitly by being overwritten by a subsequent insertion of
    /// the _same_ commitment (this case is rare in practice).
    ///
    /// This does not include commitments that were inserted using [`Witness::Forget`], only those
    /// forgotten subsequent to their insertion.
    #[instrument(level = "trace", skip(self))]
    pub fn forgotten(&self) -> Forgotten {
        let forgotten = self
            .inner
            .forgotten()
            .expect("inner `Top` of `Tree` must always be in forgotten-tracking mode");
        trace!(?forgotten);
        forgotten
    }

    /// The number of [`Commitment`]s currently witnessed in this [`Tree`].
    ///
    /// Note that [`forget`](Tree::forget)ting a commitment decreases this count, but does not
    /// decrease the [`position`](Tree::position) of the next inserted [`Commitment`].
    #[instrument(level = "trace", skip(self))]
    pub fn witnessed_count(&self) -> usize {
        let count = self.index.len();
        trace!(?count);
        count
    }

    /// Check whether this [`Tree`] is empty.
    #[instrument(level = "trace", skip(self))]
    pub fn is_empty(&self) -> bool {
        let is_empty = self.inner.is_empty();
        trace!(?is_empty);
        is_empty
    }

    /// Get an iterator over all commitments currently witnessed in the tree, **ordered by
    /// position**.
    ///
    /// Unlike [`commitments_unordered`](Tree::commitments_unordered), this guarantees that
    /// commitments will be returned in order, but it may be slower by a constant factor.
    #[instrument(level = "trace", skip(self))]
    pub fn commitments(
        &self,
    ) -> impl Iterator<Item = (Position, StateCommitment)> + Send + Sync + '_ {
        crate::storage::serialize::Serializer::default().commitments(self)
    }

    /// Get an iterator over all commitments currently witnessed in the tree.
    ///
    /// Unlike [`commitments`](Tree::commitments), this **does not** guarantee that commitments will
    /// be returned in order, but it may be faster by a constant factor.
    #[instrument(level = "trace", skip(self))]
    pub fn commitments_unordered(
        &self,
    ) -> impl Iterator<Item = (StateCommitment, Position)> + Send + Sync + '_ {
        self.index.iter().map(|(c, p)| (*c, Position(*p)))
    }

    /// Get a dynamic representation of the internal structure of the tree, which can be traversed
    /// and inspected arbitrarily.
    pub fn structure(&self) -> structure::Node {
        let _structure_span = trace_span!("structure");
        // TODO: use the structure span for instrumenting methods of the structure, as it is traversed
        Node::root(&*self.inner)
    }

    /// Deserialize a tree from a [`storage::Read`] of its contents, without checking for internal
    /// consistency.
    ///
    /// This can be more convenient than [`Tree::load`], since it is able to internally query the
    /// storage for the last position and forgotten count.
    ///
    /// ⚠️ **WARNING:** Do not deserialize trees you did not serialize yourself, or risk violating
    /// internal invariants.
    pub fn from_reader<R: Read>(reader: &mut R) -> Result<Tree, R::Error> {
        storage::deserialize::from_reader(reader)
    }

    /// Serialize the tree incrementally from the last stored [`Position`] and [`Forgotten`]
    /// specified, into a [`storage::Write`], performing only the operations necessary to serialize
    /// the changes to the tree.
    ///
    /// This can be more convenient than using [`Tree::updates`], because it is able to internally
    /// query the storage for the last position and forgotten count, and drive the storage
    /// operations itself.
    pub fn to_writer<W: Write>(&self, writer: &mut W) -> Result<(), W::Error> {
        storage::serialize::to_writer(writer, self)
    }

    /// Deserialize a tree from a [`storage::AsyncRead`] of its contents, without checking for
    /// internal consistency.
    ///
    /// This can be more convenient than [`Tree::load`], since it is able to internally query the
    /// storage for the last position and forgotten count.
    ///
    /// ⚠️ **WARNING:** Do not deserialize trees you did not serialize yourself, or risk violating
    /// internal invariants.
    pub async fn from_async_reader<R: AsyncRead>(reader: &mut R) -> Result<Tree, R::Error> {
        storage::deserialize::from_async_reader(reader).await
    }

    /// Serialize the tree incrementally from the last stored [`Position`] and [`Forgotten`]
    /// specified, into a [`storage::AsyncWrite`], performing only the operations necessary to
    /// serialize the changes to the tree.
    ///
    /// This can be more convenient than using [`Tree::updates`], because it is able to internally
    /// query the storage for the last position and forgotten count, and drive the storage
    /// operations itself.
    pub async fn to_async_writer<W: AsyncWrite>(&self, writer: &mut W) -> Result<(), W::Error> {
        storage::serialize::to_async_writer(writer, self).await
    }

    /// Deserialize a tree using externally driven iteration, without checking for internal
    /// consistency.
    ///
    /// Reconstructing a [`Tree`] using this method requires stepping through a series of states, as
    /// follows:
    ///
    /// 1. [`Tree::load`] returns an object [`LoadCommitments`](storage::LoadCommitments) which can
    ///    be used to [`insert`](storage::LoadCommitments::insert) positioned commitments.
    /// 2. When all commitments have been inserted, call
    ///    [`.load_hashes()`](storage::LoadCommitments::load_hashes) to get an object
    ///    [`LoadHashes`](storage::LoadHashes).
    /// 3. [`LoadHashes`](storage::LoadHashes) can be used to
    ///    [`insert`](storage::LoadHashes::insert) positioned, heighted hashes.
    /// 4. Finally, call [`.finish()`](storage::LoadHashes::finish) on the
    ///    [`LoadHashes`](storage::LoadHashes) to get the [`Tree`].
    ///
    /// ⚠️ **WARNING:** Do not deserialize trees you did not serialize yourself, or risk violating
    /// internal invariants. You *must* insert all the commitments and hashes corresponding to the
    /// stored tree, or the reconstructed tree will not match what was serialized, and further, it
    /// may have internal inconsistencies that will mean that the proofs it produces will not
    /// verify.
    ///
    /// ℹ️ **NOTE:** You may prefer to use [`from_reader`](Tree::from_reader) or
    /// [`from_async_reader`](Tree::from_async_reader), which drive the iteration over the
    /// underlying storage *internally* rather than requiring the caller to drive the iteration.
    /// [`Tree::load`] is predominanly useful in circumstances when this inversion of control does
    /// not make sense.
    pub fn load(
        last_position: impl Into<StoredPosition>,
        last_forgotten: Forgotten,
    ) -> storage::deserialize::LoadCommitments {
        storage::deserialize::LoadCommitments::new(last_position, last_forgotten)
    }

    /// Serialize the tree incrementally from the last stored [`Position`] and [`Forgotten`]
    /// specified, into an iterator of [`storage::Update`]s.
    ///
    /// This returns only the operations necessary to serialize the changes to the tree,
    /// synchronizing the in-memory representation with what is stored.
    ///
    /// The iterator of updates may be [`.collect()`](Iterator::collect)ed into a
    /// [`storage::Updates`], which is more compact in-memory than
    /// [`.collect()`](Iterator::collect)ing into a [`Vec<Update>`](Vec).
    ///
    /// ℹ️ **NOTE:** You may prefer to use [`to_writer`](Tree::to_writer) or
    /// [`to_async_writer`](Tree::to_async_writer), which drive the operations on the underlying
    /// storage *internally* rather than requiring the caller to drive iteration. [`Tree::updates`]
    /// is predominantly useful in circumstances when this inversion of control does not make sense.
    pub fn updates(
        &self,
        last_position: impl Into<StoredPosition>,
        last_forgotten: Forgotten,
    ) -> impl Iterator<Item = Update> + Send + Sync + '_ {
        storage::serialize::updates(last_position.into(), last_forgotten, self)
    }
}

impl From<frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>> for Tree {
    fn from(inner: frontier::Top<frontier::Tier<frontier::Tier<frontier::Item>>>) -> Self {
        let mut index = HashedMap::default();

        // Traverse the tree to reconstruct the index
        let mut stack = vec![Node::root(&inner)];
        while let Some(node) = stack.pop() {
            stack.extend(node.children());

            if let structure::Kind::Leaf {
                commitment: Some(commitment),
            } = node.kind()
            {
                index.insert(commitment, node.position().0);
            }
        }

        Self {
            inner: Arc::new(inner),
            index,
        }
    }
}