penumbra_tct/storage/serialize.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
//! Incremental serialization for the [`Tree`](crate::Tree).
use poseidon377::Fq;
use serde::de::Visitor;
use crate::prelude::*;
pub(crate) mod fq;
/// Options for serializing a tree.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub(crate) struct Serializer {
/// The last position stored in storage, to allow for incremental serialization.
last_position: StoredPosition,
/// The minimum forgotten version which should be reported for deletion.
last_forgotten: Forgotten,
}
/// Data about an internal hash at a particular point in the tree.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub(crate) struct InternalHash {
/// The position of the hash.
pub position: Position,
/// The height of the hash.
pub height: u8,
/// The hash.
pub hash: Hash,
/// Whether the hash is essential to be serialized.
///
/// If this is `false`, that means this hash could be omitted and deserialization would be
/// correct, but slower.
pub essential: bool,
/// Whether the children of the node should be deleted.
pub delete_children: bool,
}
impl Serializer {
fn is_node_fresh(&self, node: &structure::Node) -> bool {
match self.last_position {
StoredPosition::Full => false,
StoredPosition::Position(last_stored_position) => {
let node_position: u64 = node.position().into();
let last_stored_position: u64 = last_stored_position.into();
// If the node is ahead of the last stored position, we need to serialize it
node_position >= last_stored_position
|| (
// If the height is zero, we don't need to care because the frontier tip is
// always serialized
node.height() > 0
// The harder part: if the node is not ahead of the last stored position, we omitted
// serializing it if it was at that time on the frontier, but we can't skip that now
&& self.was_node_on_previous_frontier(node)
)
}
}
}
fn was_node_on_previous_frontier(&self, node: &structure::Node) -> bool {
if let StoredPosition::Position(last_stored_position) = self.last_position {
let last_stored_position: u64 = last_stored_position.into();
if let Some(last_frontier_tip) = last_stored_position.checked_sub(1) {
let height = node.height();
let node_position: u64 = node.position().into();
// This is true precisely when the node *was* on the frontier at the time
// when the position was `last_stored_position`: because frontier nodes are
// not serialized unless they are the leaf, we need to take care of these
// also: Shift by height * 2 and compare to compare the leading prefixes of
// the position of the hypothetical frontier tip node as of the last stored
// position, but only *down to* the height, indicating whether the node we
// are examining was on the frontier
node_position >> (height * 2) == last_frontier_tip >> (height * 2)
} else {
false
}
} else {
false
}
}
fn node_has_fresh_children(&self, node: &structure::Node) -> bool {
self.is_node_fresh(node)
|| match self.last_position {
StoredPosition::Position(last_stored_position) => node
.range()
// Subtract one from the last-stored position to get the frontier tip as of the
// last serialization: if this is in range, some of the node's children might be
// worth investigating
.contains(&u64::from(last_stored_position).saturating_sub(1).into()),
StoredPosition::Full => false,
}
}
/// Serialize a tree's structure into a depth-first pre-order traversal of hashes within it.
pub fn hashes(
self,
tree: &crate::Tree,
) -> impl Iterator<Item = InternalHash> + Send + Sync + '_ {
let mut stack = vec![vec![tree.structure()]];
std::iter::from_fn(move || {
while let Some(level) = stack.last_mut() {
if let Some(node) = level.pop() {
let position = node.position();
let height = node.height();
let mut children = node.children();
let has_children = !children.is_empty();
// Traverse the children in order, provided that the minimum position doesn't preclude this
if self.node_has_fresh_children(&node) {
children.reverse();
stack.push(children);
}
if let Some(hash) = node.cached_hash() {
// A node's hash is recalculable if it has children or if it has a witnessed commitment
let recalculable = has_children
|| matches!(
node.kind(),
Kind::Leaf {
commitment: Some(_)
}
);
// A node's hash is essential if it is not recalculable
let essential = !recalculable;
// A node is complete if it's not on the frontier
let complete = node.place() == Place::Complete;
// A node is fresh if it couldn't have been serialized to storage yet
let fresh = self.is_node_fresh(&node);
// We always serialize the frontier leaf hash, even though it's not essential,
// because it's not going to change
let frontier_leaf = !complete && matches!(node.kind(), Kind::Leaf { .. });
// We only need to issue an instruction to delete the children if the node
// is both essential and also was previously on the frontier
let delete_children =
essential && self.was_node_on_previous_frontier(&node);
// If a node is not default, fresh, and either essential (i.e. the frontier
// leaf) or complete, then we should emit a hash for it
if fresh && (essential || complete || frontier_leaf) {
return Some(InternalHash {
position,
height,
hash,
essential,
delete_children,
});
}
}
} else {
stack.pop();
}
}
None
})
}
/// Serialize a tree's structure into its commitments, in right-to-left order.
pub fn commitments(
self,
tree: &crate::Tree,
) -> impl Iterator<Item = (Position, StateCommitment)> + Send + Sync + '_ {
let mut stack = vec![vec![tree.structure()]];
std::iter::from_fn(move || {
while let Some(level) = stack.last_mut() {
if let Some(node) = level.pop() {
let position = node.position();
let mut children = node.children();
// Traverse the children in order, provided that the minimum position doesn't preclude this
if self.node_has_fresh_children(&node) {
children.reverse();
stack.push(children);
}
// If the minimum position is too high, then don't keep this node (but maybe some of
// its children will be kept)
if self.is_node_fresh(&node) {
// If we're at a witnessed commitment, yield it
if let Kind::Leaf {
commitment: Some(commitment),
} = node.kind()
{
return Some((position, commitment));
}
}
} else {
stack.pop();
}
}
None
})
}
/// Get a stream of forgotten locations, which can be deleted from incremental storage.
pub fn forgotten(
self,
tree: &crate::Tree,
) -> impl Iterator<Item = InternalHash> + Send + Sync + '_ {
let mut stack = vec![vec![tree.structure()]];
std::iter::from_fn(move || {
while let Some(level) = stack.last_mut() {
if let Some(node) = level.pop() {
// Only report nodes (and their children) which are less than the last stored position
// (because those greater will not have yet been serialized to storage) and greater
// than or equal to the minimum forgotten version (because those lesser will already
// have been deleted from storage)
let before_last_stored_position = match self.last_position {
StoredPosition::Full => true,
StoredPosition::Position(last_stored_position) =>
// We don't do anything at all if the node position is greater than or equal
// to the last stored position, because in that case, it, *as well as its
// children* have never been persisted into storage, so no deletions are
// necessary to deal with any things that have been forgotten within them
{
node.position() < last_stored_position
}
};
if before_last_stored_position && node.forgotten() > self.last_forgotten {
let mut children = node.children();
if children.is_empty() {
// If there are no children, report the point
// A node with no children definitely has a precalculated hash, so this
// is not evaluating any extra hashes
let hash = node.hash();
return Some(InternalHash {
position: node.position(),
height: node.height(),
hash,
// All forgotten nodes are essential, because they have nothing
// beneath them to witness them
essential: true,
// All forgotten nodes should cause their children to be deleted
delete_children: true,
});
} else {
// If there are children, this node was not yet forgotten, but because the
// node's forgotten version is greater than the minimum forgotten specified
// in the options, we know there is some child which needs to be accounted for
children.reverse();
stack.push(children);
}
}
} else {
stack.pop();
}
}
None
})
}
}
/// Serialize the changes to a [`Tree`](crate::Tree) into an asynchronous writer, deleting all
/// forgotten nodes and adding all new nodes.
pub async fn to_async_writer<W: AsyncWrite>(
writer: &mut W,
tree: &crate::Tree,
) -> Result<(), W::Error> {
// Grab the current position stored in storage
let last_position = writer.position().await?;
// Grab the last forgotten version stored in storage
let last_forgotten = writer.forgotten().await?;
for update in updates(last_position, last_forgotten, tree) {
match update {
Update::SetPosition(position) => writer.set_position(position).await?,
Update::SetForgotten(forgotten) => writer.set_forgotten(forgotten).await?,
Update::StoreHash(StoreHash {
position,
height,
hash,
essential,
}) => {
writer.add_hash(position, height, hash, essential).await?;
}
Update::StoreCommitment(StoreCommitment {
position,
commitment,
}) => {
writer.add_commitment(position, commitment).await?;
}
Update::DeleteRange(DeleteRange {
below_height,
positions,
}) => {
writer.delete_range(below_height, positions).await?;
}
}
}
Ok(())
}
/// Serialize the changes to a [`Tree`](crate::Tree) into a synchronous writer, deleting all
/// forgotten nodes and adding all new nodes.
pub fn to_writer<W: Write>(writer: &mut W, tree: &crate::Tree) -> Result<(), W::Error> {
// Grab the current position stored in storage
let last_position = writer.position()?;
// Grab the last forgotten version stored in storage
let last_forgotten = writer.forgotten()?;
for update in updates(last_position, last_forgotten, tree) {
match update {
Update::SetPosition(position) => writer.set_position(position)?,
Update::SetForgotten(forgotten) => writer.set_forgotten(forgotten)?,
Update::StoreHash(StoreHash {
position,
height,
hash,
essential,
}) => {
writer.add_hash(position, height, hash, essential)?;
}
Update::StoreCommitment(StoreCommitment {
position,
commitment,
}) => {
writer.add_commitment(position, commitment)?;
}
Update::DeleteRange(DeleteRange {
below_height,
positions,
}) => {
writer.delete_range(below_height, positions)?;
}
}
}
Ok(())
}
/// Create an iterator of all the updates to the tree since the specified last position and last
/// forgotten version.
pub fn updates(
last_position: impl Into<StoredPosition>,
last_forgotten: Forgotten,
tree: &crate::Tree,
) -> impl Iterator<Item = storage::Update> + Send + Sync + '_ {
if tree.is_empty() {
None
} else {
let last_position = last_position.into();
let serializer = Serializer {
last_forgotten,
last_position,
};
let position_updates = Some(if let Some(position) = tree.position() {
StoredPosition::Position(position)
} else {
StoredPosition::Full
})
.into_iter()
.filter(move |&position| position != last_position)
.map(storage::Update::SetPosition);
let forgotten_updates = Some(tree.forgotten())
.into_iter()
.filter(move |&forgotten| forgotten != last_forgotten)
.map(storage::Update::SetForgotten);
let commitment_updates = serializer.commitments(tree).map(|(position, commitment)| {
storage::Update::StoreCommitment(storage::StoreCommitment {
position,
commitment,
})
});
let hash_and_deletion_updates = serializer
.forgotten(tree)
.chain(serializer.hashes(tree))
.flat_map(
move |InternalHash {
position,
height,
hash,
essential,
delete_children,
}| {
let deletion_update = if delete_children {
// Calculate the range of positions to delete, based on the height
let position = u64::from(position);
let stride = 4u64.pow(height.into());
let positions =
position.into()..(position + stride).min(4u64.pow(24) - 1).into();
// Delete the range of positions
Some(storage::Update::DeleteRange(storage::DeleteRange {
below_height: height,
positions,
}))
} else {
None
};
let hash_update = if hash != Hash::one() {
// Optimization: don't serialize `Hash::one()`, because it will be filled in automatically
Some(storage::Update::StoreHash(storage::StoreHash {
position,
height,
hash,
essential,
}))
} else {
None
};
// Deleting children, then adding the hash allows the backend to do a sensibility check that
// there are no children of essential hashes, if it chooses to.
deletion_update.into_iter().chain(hash_update)
},
);
Some(
position_updates
.chain(forgotten_updates)
.chain(commitment_updates)
.chain(hash_and_deletion_updates),
)
}
.into_iter()
.flatten()
}