penumbra_tct/storage.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
//! Incremental serialization and non-incremental deserialization for the [`Tree`](crate::Tree).
use std::{
collections::{btree_map::Entry, BTreeMap},
fmt::Debug,
ops::Range,
};
use futures::Stream;
use crate::prelude::*;
pub(crate) mod deserialize;
pub(crate) mod serialize;
pub mod in_memory;
pub use deserialize::{LoadCommitments, LoadHashes};
pub use in_memory::InMemory;
/// A stored position for the tree: either the position of the tree, or a marker indicating that it
/// is full, and therefore does not have a position.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
pub enum StoredPosition {
/// The tree has the given position.
Position(Position),
/// The tree is full.
Full,
}
impl Default for StoredPosition {
fn default() -> Self {
StoredPosition::Position(Position::default())
}
}
impl From<StoredPosition> for Option<Position> {
fn from(stored: StoredPosition) -> Self {
match stored {
StoredPosition::Position(position) => Some(position),
StoredPosition::Full => None,
}
}
}
impl From<Option<Position>> for StoredPosition {
fn from(position: Option<Position>) -> Self {
match position {
Some(position) => StoredPosition::Position(position),
None => StoredPosition::Full,
}
}
}
/// An `async` storage backend capable of reading stored [`struct@Hash`]es and [`Commitment`]s as
/// well as storing the current [`Position`].
#[async_trait]
pub trait AsyncRead {
/// The error returned when something goes wrong in a request.
type Error;
/// The type of stream returned by [`AsyncRead::hashes`].
type HashesStream<'a>: Stream<Item = Result<(Position, u8, Hash), Self::Error>> + Unpin + 'a
where
Self: 'a;
/// The type of stream returned by [`AsyncRead::commitments`].
type CommitmentsStream<'a>: Stream<Item = Result<(Position, StateCommitment), Self::Error>>
+ Unpin
+ 'a
where
Self: 'a;
/// Fetch the current position stored.
async fn position(&mut self) -> Result<StoredPosition, Self::Error>;
/// Fetch the current forgotten version.
async fn forgotten(&mut self) -> Result<Forgotten, Self::Error>;
/// Fetch the hash at the given position and height, if it exists.
async fn hash(&mut self, position: Position, height: u8) -> Result<Option<Hash>, Self::Error>;
/// Get the full list of all internal hashes stored, indexed by position and height.
fn hashes(&mut self) -> Self::HashesStream<'_>;
/// Fetch the commitment at the given position, if it exists.
async fn commitment(
&mut self,
position: Position,
) -> Result<Option<StateCommitment>, Self::Error>;
/// Get the full list of all commitments stored, indexed by position.
fn commitments(&mut self) -> Self::CommitmentsStream<'_>;
}
/// An `async` storage backend capable of writing [`struct@Hash`]es and [`Commitment`]s, and
/// garbage-collecting those which have been forgotten.
#[async_trait]
pub trait AsyncWrite: AsyncRead {
/// Write a single hash into storage.
///
/// Backends are only *required* to persist hashes marked as `essential`. They may choose to
/// persist other hashes, and the choice of which non-essential hashes to persist is
/// unconstrained. However, choosing not to persist non-essential hashes imposes computational
/// overhead upon deserialization.
async fn add_hash(
&mut self,
position: Position,
height: u8,
hash: Hash,
essential: bool,
) -> Result<(), Self::Error>;
/// Write a single commitment into storage.
///
/// This should return an error if a commitment is already present at that location; no
/// location's value should ever be overwritten.
async fn add_commitment(
&mut self,
position: Position,
commitment: StateCommitment,
) -> Result<(), Self::Error>;
/// Delete every stored [`struct@Hash`] whose height is less than `below_height` and whose
/// position is within the half-open [`Range`] of `positions`, as well as every [`Commitment`]
/// whose position is within the range.
async fn delete_range(
&mut self,
below_height: u8,
positions: Range<Position>,
) -> Result<(), Self::Error>;
/// Set the stored position of the tree.
///
/// This should return an error if the position goes backwards.
async fn set_position(&mut self, position: StoredPosition) -> Result<(), Self::Error>;
/// Set the forgotten version of the tree.
///
/// This should return an error if the version goes backwards.
async fn set_forgotten(&mut self, forgotten: Forgotten) -> Result<(), Self::Error>;
}
/// A synchronous storage backend capable of reading stored [`struct@Hash`]es and [`Commitment`]s as
/// well as storing the current [`Position`].
pub trait Read {
/// The error returned when something goes wrong in a request.
type Error;
/// The type of iterator returned when reading hashes from the database.
type HashesIter<'a>: Iterator<Item = Result<(Position, u8, Hash), Self::Error>> + 'a
where
Self: 'a;
/// The type of iterator returned when reading commitments from the database.
type CommitmentsIter<'a>: Iterator<Item = Result<(Position, StateCommitment), Self::Error>> + 'a
where
Self: 'a;
/// Fetch the current position stored.
fn position(&mut self) -> Result<StoredPosition, Self::Error>;
/// Fetch the current forgotten version.
fn forgotten(&mut self) -> Result<Forgotten, Self::Error>;
/// Fetch a specific hash at the given position and height, if it exists.
fn hash(&mut self, position: Position, height: u8) -> Result<Option<Hash>, Self::Error>;
/// Get the full list of all internal hashes stored, indexed by position and height.
#[allow(clippy::type_complexity)]
fn hashes(&mut self) -> Self::HashesIter<'_>;
/// Fetch a specific commitment at the given position, if it exists.
fn commitment(&mut self, position: Position) -> Result<Option<StateCommitment>, Self::Error>;
/// Get the full list of all commitments stored, indexed by position.
#[allow(clippy::type_complexity)]
fn commitments(&mut self) -> Self::CommitmentsIter<'_>;
}
/// A synchronous storage backend capable of writing [`struct@Hash`]es and [`Commitment`]s, and
/// garbage-collecting those which have been forgotten.
pub trait Write: Read {
/// Write a single hash into storage.
///
/// Backends are only *required* to persist hashes marked as `essential`. They may choose to
/// persist other hashes, and the choice of which non-essential hashes to persist is
/// unconstrained. However, choosing not to persist non-essential hashes imposes computational
/// overhead upon deserialization.
fn add_hash(
&mut self,
position: Position,
height: u8,
hash: Hash,
essential: bool,
) -> Result<(), Self::Error>;
/// Write a single commitment into storage.
///
/// This should return an error if a commitment is already present at that location; no
/// location's value should ever be overwritten.
fn add_commitment(
&mut self,
position: Position,
commitment: StateCommitment,
) -> Result<(), Self::Error>;
/// Delete every stored [`struct@Hash`] whose height is less than `below_height` and whose
/// position is within the half-open [`Range`] of `positions`, as well as every [`Commitment`]
/// whose position is within the range.
fn delete_range(
&mut self,
below_height: u8,
positions: Range<Position>,
) -> Result<(), Self::Error>;
/// Set the stored position of the tree.
///
/// This should return an error if the position goes backwards.
fn set_position(&mut self, position: StoredPosition) -> Result<(), Self::Error>;
/// Set the forgotten version of the tree.
///
/// This should return an error if the version goes backwards.
fn set_forgotten(&mut self, forgotten: Forgotten) -> Result<(), Self::Error>;
}
/// A single update to the underlying storage, as a data type.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum Update {
/// Set the position of the tree.
SetPosition(StoredPosition),
/// Set the forgotten version of the tree.
SetForgotten(Forgotten),
/// Add a commitment to the tree.
StoreCommitment(StoreCommitment),
/// Add a hash to the tree.
StoreHash(StoreHash),
/// Delete a range of hashes and commitments from the tree.
DeleteRange(DeleteRange),
}
/// An update to the underlying storage that constitutes storing a single hash.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct StoreHash {
/// The position of the hash.
pub position: Position,
/// The height of the hash.
pub height: u8,
/// The hash itself.
pub hash: Hash,
/// Whether the hash is essential to store, or can be dropped at the discretion of the storage backend.
pub essential: bool,
}
/// An update to the underlying storage that constitutes storing a single commitment.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct StoreCommitment {
/// The position of the commitment.
pub position: Position,
/// The commitment itself.
pub commitment: StateCommitment,
}
/// An update to the underlying storage that constitutes deleting a range of hashes and commitments.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DeleteRange {
/// The height strictly below which hashes should be deleted.
pub below_height: u8,
/// The half-open range of positions within which hashes and commitments should be deleted.
pub positions: Range<Position>,
}
/// A collection of updates to the underlying storage.
///
/// Note that this is both `FromIterator<Update>` and `Iterator<Item = Update>`, so you can
/// [`.collect()`](Iterator::collect) an `Iterator<Item = Update>` into this type, and you can also
/// iterate over its contained updates.
#[derive(Debug, Clone, Default, Serialize, Deserialize)]
pub struct Updates {
/// The new position to set, if any.
pub set_position: Option<StoredPosition>,
/// The new forgotten version to set, if any.
pub set_forgotten: Option<Forgotten>,
/// The new commitments to store.
pub store_commitments: Vec<StoreCommitment>,
/// The new hashes to store.
pub store_hashes: Vec<StoreHash>,
/// The ranges of hashes and commitments to delete.
pub delete_ranges: Vec<DeleteRange>,
}
impl FromIterator<Update> for Updates {
fn from_iter<I: IntoIterator<Item = Update>>(iter: I) -> Self {
let mut updates = Updates::default();
for update in iter {
match update {
Update::SetPosition(position) => updates.set_position = Some(position),
Update::SetForgotten(forgotten) => updates.set_forgotten = Some(forgotten),
Update::StoreCommitment(commitment) => updates.store_commitments.push(commitment),
Update::StoreHash(hash) => updates.store_hashes.push(hash),
Update::DeleteRange(range) => updates.delete_ranges.push(range),
}
}
updates
}
}
impl Iterator for Updates {
type Item = Update;
fn next(&mut self) -> Option<Self::Item> {
if let Some(position) = self.set_position.take() {
return Some(Update::SetPosition(position));
}
if let Some(forgotten) = self.set_forgotten.take() {
return Some(Update::SetForgotten(forgotten));
}
if let Some(commitment) = self.store_commitments.pop() {
return Some(Update::StoreCommitment(commitment));
}
if let Some(hash) = self.store_hashes.pop() {
return Some(Update::StoreHash(hash));
}
if let Some(range) = self.delete_ranges.pop() {
return Some(Update::DeleteRange(range));
}
None
}
}