penumbra_tct/
r1cs.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//! This module defines how to verify TCT auth paths in a rank-1 constraint system.
use ark_ff::ToConstraintField;
use ark_r1cs_std::{prelude::*, uint64::UInt64};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};

use decaf377::{r1cs::FqVar, Fq};

use crate::{internal::hash::DOMAIN_SEPARATOR, Position, Proof, StateCommitment};

impl ToConstraintField<Fq> for Position {
    fn to_field_elements(&self) -> Option<Vec<Fq>> {
        // The variable created in AllocVar<Position, Fq> is a UInt64, which is a
        // Vec of 64 Boolean<Fq> constraints. To construct the corresponding
        // public input, we need to convert the u64 into 64 bits, and then
        // convert each bit into a individual Fq element.
        let mut field_elements = Vec::<Fq>::new();
        let value: u64 = u64::from(*self);
        for i in 0..64 {
            let bit = ((value >> i) & 1) != 0;
            field_elements
                .push(bool::to_field_elements(&bit).expect("can convert bit to field element")[0]);
        }
        Some(field_elements)
    }
}

#[derive(Clone, Debug)]
/// Represents the position of a leaf in the TCT represented in R1CS.
pub struct PositionVar {
    /// The FqVar representing the leaf.
    pub position: FqVar,
    /// Bits
    pub bits: [Boolean<Fq>; 48],
}

impl AllocVar<Position, Fq> for PositionVar {
    fn new_variable<T: std::borrow::Borrow<Position>>(
        cs: impl Into<ark_relations::r1cs::Namespace<Fq>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: ark_r1cs_std::prelude::AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        let inner: Position = *f()?.borrow();

        let position = UInt64::new_variable(cs, || Ok(u64::from(inner)), mode)?;
        let bits = position.to_bits_le();
        for bit in &bits[48..] {
            bit.enforce_equal(&Boolean::Constant(false))?;
        }
        let inner = Boolean::<Fq>::le_bits_to_fp_var(&bits[0..48])?;

        Ok(Self {
            bits: bits[0..48]
                .to_vec()
                .try_into()
                .expect("should be able to fit in 48 bits"),
            position: inner,
        })
    }
}

impl ToBitsGadget<Fq> for PositionVar {
    fn to_bits_le(&self) -> Result<Vec<Boolean<Fq>>, SynthesisError> {
        Ok(self.bits.to_vec())
    }
}

impl PositionVar {
    /// Witness the commitment index by taking the last 16 bits of the position.
    pub fn commitment(&self) -> Result<FqVar, SynthesisError> {
        Boolean::<Fq>::le_bits_to_fp_var(&self.bits[0..16])
    }

    /// Witness the block.
    pub fn block(&self) -> Result<FqVar, SynthesisError> {
        Boolean::<Fq>::le_bits_to_fp_var(&self.bits[16..32])
    }

    /// Witness the epoch by taking the first 16 bits of the position.
    pub fn epoch(&self) -> Result<FqVar, SynthesisError> {
        Boolean::<Fq>::le_bits_to_fp_var(&self.bits[32..48])
    }
}

impl R1CSVar<Fq> for PositionVar {
    type Value = Position;

    fn cs(&self) -> ark_relations::r1cs::ConstraintSystemRef<Fq> {
        self.position.cs()
    }

    fn value(&self) -> Result<Self::Value, SynthesisError> {
        let inner_fq = self.position.value()?;
        let inner_bytes = &inner_fq.to_bytes()[0..8];
        let position_bytes: [u8; 8] = inner_bytes
            .try_into()
            .expect("should be able to fit in 16 bytes");
        Ok(Position::from(u64::from_le_bytes(position_bytes)))
    }
}

/// This represents the TCT's auth path in R1CS.
pub struct MerkleAuthPathVar {
    inner: [[FqVar; 3]; 24],
}

impl AllocVar<Proof, Fq> for MerkleAuthPathVar {
    fn new_variable<T: std::borrow::Borrow<Proof>>(
        cs: impl Into<ark_relations::r1cs::Namespace<Fq>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: ark_r1cs_std::prelude::AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        let inner1 = f()?;
        let inner: &Proof = inner1.borrow();
        // This adds one FqVar per sibling and keeps them grouped together by height.
        let mut auth_path = Vec::<[FqVar; 3]>::new();
        for depth in inner.auth_path() {
            let mut nodes = [FqVar::zero(), FqVar::zero(), FqVar::zero()];
            for (i, node) in depth.iter().enumerate() {
                nodes[i] = FqVar::new_variable(cs.clone(), || Ok(Fq::from(*node)), mode)?;
            }
            auth_path.push(nodes);
        }

        Ok(Self {
            inner: auth_path
                .try_into()
                .expect("TCT auth path should have depth 24"),
        })
    }
}

impl MerkleAuthPathVar {
    /// Hash a node given the children at the given height.
    pub fn hash_node(
        cs: ConstraintSystemRef<Fq>,
        height_var: FqVar,
        a: FqVar,
        b: FqVar,
        c: FqVar,
        d: FqVar,
    ) -> Result<FqVar, SynthesisError> {
        let domain_separator = FqVar::new_constant(cs.clone(), *DOMAIN_SEPARATOR)?;
        poseidon377::r1cs::hash_4(cs, &(domain_separator + height_var), (a, b, c, d))
    }

    /// Certify an auth path given a provided anchor, position, and leaf.
    pub fn verify(
        &self,
        cs: ConstraintSystemRef<Fq>,
        enforce: &Boolean<Fq>,
        position_bits: &[Boolean<Fq>],
        anchor_var: FqVar,
        commitment_var: FqVar,
    ) -> Result<(), SynthesisError> {
        // We need to compute the root using the provided auth path, position,
        // and leaf.
        let domain_separator = FqVar::new_constant(cs.clone(), *DOMAIN_SEPARATOR)?;
        let leaf_var = poseidon377::r1cs::hash_1(cs.clone(), &domain_separator, commitment_var)?;

        // Height 0 is the leaf.
        let mut previous_level = leaf_var;

        // Start hashing from height 1, first hashing the leaf and its three siblings together,
        // then the next level and so on, until we reach the root of the quadtree.
        for height_value in 1..=24 {
            let height_var = FqVar::new_constant(cs.clone(), Fq::from(height_value as u64))?;
            let which_way_var = WhichWayVar::at(height_value, position_bits)?;
            let siblings = &self.inner[(24 - height_value) as usize];
            let [leftmost, left, right, rightmost] =
                which_way_var.insert(previous_level.clone(), siblings.clone())?;

            let parent = MerkleAuthPathVar::hash_node(
                cs.clone(),
                height_var,
                leftmost,
                left,
                right,
                rightmost,
            )?;

            previous_level = parent;
        }

        anchor_var.conditional_enforce_equal(&previous_level, enforce)?;

        Ok(())
    }
}

/// Represents the different paths a quadtree node can take.
///
/// A bundle of boolean R1CS constraints representing the path.
pub struct WhichWayVar {
    /// This FqVar has been constructed from two bits of the position.
    inner: FqVar,
}

impl WhichWayVar {
    /// Given a height and an index of a leaf, determine which direction the path down to that leaf
    /// should branch at the node at that height. Allocates a `WhichWayVar`.
    pub fn at(height: u8, position_bits: &[Boolean<Fq>]) -> Result<WhichWayVar, SynthesisError> {
        let shift = 2 * (height - 1);
        let bit_1 = position_bits[shift as usize].clone();
        let bit_2 = position_bits[(shift + 1) as usize].clone();

        // Convert last two bits back to a field element.
        //
        // The below is effectively ensuring that the inner FqVar is constrained to be within
        // the range [0, 3] via the equation `inner = bit_1 + 2 * bit_2`
        // For example, for the maximum values: bit_1 = 1, bit_2 = 1
        // inner = 1 + 2 * 1 = 3
        let inner = FqVar::from(bit_1) + FqVar::constant(Fq::from(2u64)) * FqVar::from(bit_2);

        Ok(WhichWayVar { inner })
    }

    /// Insert the provided node into the quadtree at the provided height.
    pub fn insert(&self, node: FqVar, siblings: [FqVar; 3]) -> Result<[FqVar; 4], SynthesisError> {
        // The node is the leftmost (0th) child.
        let is_leftmost = self.inner.is_eq(&FqVar::zero())?;
        // The node is the left (1st) child.
        let is_left = self.inner.is_eq(&FqVar::one())?;
        // The node is the right (2nd) child.
        let is_right = self.inner.is_eq(&FqVar::constant(Fq::from(2u128)))?;
        // The node is the rightmost (3rd) child.
        let is_rightmost = self.inner.is_eq(&FqVar::constant(Fq::from(3u128)))?;

        // Cases:
        // * `is_leftmost`: the leftmost should be the node
        // * `is_left`: the leftmost should be the first sibling (`siblings[0]`)
        // * `is_right`: the leftmost should be the first sibling (`siblings[0]`)
        // * `is_rightmost`: the leftmost should be the first sibling (`siblings[0]`)
        let leftmost = FqVar::conditionally_select(&is_leftmost, &node, &siblings[0])?;

        // Cases:
        // * `is_leftmost`: the left should be the first sibling (`siblings[0]`)
        // * `is_left`: the left should be the node
        // * `is_right`: the left should be the second sibling (`siblings[1]`)
        // * `is_rightmost`: the left should be the second sibling (`siblings[1]`)
        let is_left_or_leftmost_case = is_leftmost.or(&is_left)?;
        let left_first_two_cases = FqVar::conditionally_select(&is_left, &node, &siblings[0])?;
        let left = FqVar::conditionally_select(
            &is_left_or_leftmost_case,
            &left_first_two_cases,
            &siblings[1],
        )?;

        // Cases:
        // * `is_leftmost`: the right should be the second sibling (`siblings[1]`)
        // * `is_left`: the right should be the second sibling (`siblings[1]`)
        // * `is_right`: the right should be the node
        // * `is_rightmost`: the right should be the last sibling (`siblings[2]`)
        let is_right_or_rightmost_case = is_right.or(&is_rightmost)?;
        let right_last_two_cases = FqVar::conditionally_select(&is_right, &node, &siblings[2])?;
        let right = FqVar::conditionally_select(
            &is_right_or_rightmost_case,
            &right_last_two_cases,
            &siblings[1],
        )?;

        // Cases:
        // * `is_leftmost`: the rightmost should be the last sibling (`siblings[2]`)
        // * `is_left`: the rightmost should be the last sibling (`siblings[2]`)
        // * `is_right`: the rightmost should be the last sibling (`siblings[2]`)
        // * `is_rightmost`: the rightmost should be the node
        let rightmost = FqVar::conditionally_select(&is_rightmost, &node, &siblings[2])?;

        Ok([leftmost, left, right, rightmost])
    }
}

/// Represents a state commitment in R1CS.
pub struct StateCommitmentVar {
    /// The `FqVar` representing the state commitment.
    pub inner: FqVar,
}

impl StateCommitmentVar {
    /// Access the inner `FqVar`.
    pub fn inner(&self) -> FqVar {
        self.inner.clone()
    }
}

impl AllocVar<StateCommitment, Fq> for StateCommitmentVar {
    fn new_variable<T: std::borrow::Borrow<StateCommitment>>(
        cs: impl Into<ark_relations::r1cs::Namespace<Fq>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: ark_r1cs_std::prelude::AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        match mode {
            AllocationMode::Constant => unimplemented!(),
            AllocationMode::Input => {
                let note_commitment1 = f()?;
                let note_commitment: StateCommitment = *note_commitment1.borrow();
                let inner = FqVar::new_input(cs, || Ok(note_commitment.0))?;

                Ok(Self { inner })
            }
            AllocationMode::Witness => {
                let note_commitment1 = f()?;
                let note_commitment: StateCommitment = *note_commitment1.borrow();
                let inner = FqVar::new_witness(cs, || Ok(note_commitment.0))?;

                Ok(Self { inner })
            }
        }
    }
}

impl R1CSVar<Fq> for StateCommitmentVar {
    type Value = StateCommitment;

    fn cs(&self) -> ark_relations::r1cs::ConstraintSystemRef<Fq> {
        self.inner.cs()
    }

    fn value(&self) -> Result<Self::Value, SynthesisError> {
        let inner = self.inner.value()?;
        Ok(StateCommitment(inner))
    }
}

impl EqGadget<Fq> for StateCommitmentVar {
    fn is_eq(&self, other: &Self) -> Result<Boolean<Fq>, SynthesisError> {
        self.inner.is_eq(&other.inner)
    }
}