penumbra_tct/internal/
hash.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! The core [`Hash`](struct@Hash) type, which is used internally to represent hashes, the
//! [`GetHash`] trait for computing and caching hashes of things, and the [`CachedHash`] type, which
//! is used internally for lazy evaluation of hashes.

use std::{
    fmt::{self, Debug, Formatter},
    ops::RangeInclusive,
};

use ark_ff::{One, Zero};
use once_cell::sync::Lazy;
use poseidon377::{hash_1, hash_4, Fq};
use serde::{Deserialize, Serialize};

use crate::prelude::*;

mod cache;
mod option;
pub use {cache::CachedHash, option::OptionHash};

/// A type which can be transformed into a [`struct@Hash`], either by retrieving a cached hash, computing a
/// hash for it, or some combination of both.
pub trait GetHash {
    /// Get the hash of this item.
    ///
    /// # Correctness
    ///
    /// This function must return the same hash for the same item. It is permissible to use internal
    /// mutability to cache hashes, but caching must ensure that the item cannot be mutated without
    /// recalculating the hash.
    fn hash(&self) -> Hash;

    /// Get the hash of this item, only if the hash is already cached and does not require
    /// recalculation.
    ///
    /// # Correctness
    ///
    /// It will not cause correctness issues to return a hash after recalculating it, but users of
    /// this function expect it to be reliably fast, so it may cause unexpected performance issues
    /// if this function performs any significant work.
    fn cached_hash(&self) -> Option<Hash>;

    /// If there is a hash cached, clear the cache.
    ///
    /// By default, this does nothing. Override this if there is a cache.
    fn clear_cached_hash(&self) {}
}

impl<T: GetHash> GetHash for &T {
    #[inline]
    fn hash(&self) -> Hash {
        (**self).hash()
    }

    #[inline]
    fn cached_hash(&self) -> Option<Hash> {
        (**self).cached_hash()
    }
}

impl<T: GetHash> GetHash for &mut T {
    #[inline]
    fn hash(&self) -> Hash {
        (**self).hash()
    }

    #[inline]
    fn cached_hash(&self) -> Option<Hash> {
        (**self).cached_hash()
    }
}

/// The hash of an individual [`Commitment`] or internal node in the tree.
#[derive(Clone, Copy, PartialEq, Eq, std::hash::Hash, Serialize, Deserialize)]
pub struct Hash(#[serde(with = "crate::storage::serialize::fq")] Fq);

impl From<Hash> for Fq {
    #[inline]
    fn from(hash: Hash) -> Self {
        hash.0
    }
}

impl Debug for Hash {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        if *self == Hash::zero() {
            write!(f, "0")
        } else if *self == Hash::one() {
            write!(f, "1")
        } else if *self == Hash::uninitialized() {
            write!(f, "!")
        } else {
            write!(f, "{}", hex::encode(self.to_bytes()))
        }
    }
}

/// The domain separator used for leaves in the tree, and used as a base index for the domain
/// separators of nodes in the tree (nodes get a domain separator of the form `DOMAIN_SEPARATOR +
/// HEIGHT`).
pub static DOMAIN_SEPARATOR: Lazy<Fq> =
    Lazy::new(|| Fq::from_le_bytes_mod_order(blake2b_simd::blake2b(b"penumbra.tct").as_bytes()));

#[allow(unused)]
impl Hash {
    /// Create a hash from an arbitrary [`Fq`].
    pub fn new(fq: Fq) -> Self {
        Self(fq)
    }

    /// Get an array of bytes representing the hash
    pub fn to_bytes(self) -> [u8; 32] {
        self.0.to_bytes()
    }

    /// Decode a hash from bytes representing it
    pub fn from_bytes(bytes: [u8; 32]) -> Result<Self, decaf377::EncodingError> {
        Ok(Self(Fq::from_bytes_checked(&bytes)?))
    }

    /// The zero hash, used for padding of frontier nodes.
    pub fn zero() -> Hash {
        Self(Fq::zero())
    }

    /// Checks if the hash is zero.
    pub fn is_zero(&self) -> bool {
        self.0.is_zero()
    }

    /// The one hash, used for padding of complete nodes.
    pub fn one() -> Hash {
        Self(Fq::one())
    }

    /// Checks if the hash is one.
    pub fn is_one(&self) -> bool {
        self.0.is_one()
    }

    /// A stand-in hash that is out-of-range for `Fq`, to be used during intermediate construction
    /// of the tree as a sentinel value for uninitialized nodes.
    pub(crate) fn uninitialized() -> Hash {
        Self(Fq::SENTINEL)
    }

    /// Checks if the hash is uninitialized.
    pub(crate) fn is_uninitialized(&self) -> bool {
        *self == Self::uninitialized()
    }

    /// Hash an individual commitment to be inserted into the tree.
    #[inline]
    pub fn of(item: StateCommitment) -> Hash {
        Self(hash_1(&DOMAIN_SEPARATOR, item.0))
    }

    /// Construct a hash for an internal node of the tree, given its height and the hashes of its
    /// four children.
    #[inline]
    pub fn node(height: u8, a: Hash, b: Hash, c: Hash, d: Hash) -> Hash {
        // Definition of hash of node without cache optimization
        fn hash_node(height: u8, a: Hash, b: Hash, c: Hash, d: Hash) -> Hash {
            let height = Fq::from_le_bytes_mod_order(&height.to_le_bytes());
            Hash(hash_4(&(*DOMAIN_SEPARATOR + height), (a.0, b.0, c.0, d.0)))
        }

        // The range of hashes to precompute: this captures hashes starting at the first internal node
        // above the epoch leaf, and up to the epoch root. These are the only useful hashes to
        // precompute, because commitments are expected to be cryptographically random, so
        // precomputing internal hashes within blocks won't save work, and epochs are extremely
        // unlikely to be entirely filled with empty blocks. However, in the middle, we can save
        // work by remembering how to hash power-of-4-aligned sequences of empty blocks.
        const PRECOMPUTE_HEIGHTS: RangeInclusive<u8> = 9..=16;

        const TOTAL_PRECOMPUTED: usize =
            *PRECOMPUTE_HEIGHTS.end() as usize - *PRECOMPUTE_HEIGHTS.start() as usize + 1;

        // Precompute internal node hashes lying above sequences of empty blocks within epochs
        static PRECOMPUTED_HASH_PAIRS: Lazy<[(Hash, Hash); TOTAL_PRECOMPUTED]> = Lazy::new(|| {
            let mut hashes: Vec<(Hash, Hash)> = Vec::with_capacity(PRECOMPUTE_HEIGHTS.len());

            for height in PRECOMPUTE_HEIGHTS {
                let below = hashes.last().map(|below| below.1).unwrap_or_else(Hash::one);
                hashes.push((below, hash_node(height, below, below, below, below)));
            }

            hashes
                .try_into()
                .expect("precomputed hashes should be the right length")
        });

        // If the height is in the range of the precomputed hashes, check if all the inputs are
        // equal to the singular precomputed input for that height, and return the output if so
        if PRECOMPUTE_HEIGHTS.contains(&height) {
            let index = usize::from(height - PRECOMPUTE_HEIGHTS.start());
            let (input, output) = PRECOMPUTED_HASH_PAIRS[index];
            if [a, b, c, d] == [input, input, input, input] {
                debug_assert_eq!(
                    output,
                    hash_node(height, a, b, c, d),
                    "precomputed hash mismatched calculated hash"
                );
                return output;
            }
        }

        // Otherwise, hash the node normally
        hash_node(height, a, b, c, d)
    }
}

/// A version tracking when a particular piece of the tree was explicitly forgotten.
#[derive(
    Derivative,
    Clone,
    Copy,
    PartialEq,
    Eq,
    PartialOrd,
    Ord,
    std::hash::Hash,
    Serialize,
    Deserialize,
    Default,
)]
#[cfg_attr(any(test, feature = "arbitrary"), derive(proptest_derive::Arbitrary))]
#[serde(from = "u64", into = "u64")]
pub struct Forgotten([u8; 6]);

impl Debug for Forgotten {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "{}", u64::from(*self))
    }
}

impl Forgotten {
    /// Get the next forgotten-version after this one.
    pub fn next(&self) -> Self {
        Self::from(
            u64::from(*self)
                .checked_add(1)
                .expect("forgotten should never overflow"),
        )
    }
}

impl From<Forgotten> for u64 {
    fn from(forgotten: Forgotten) -> Self {
        let mut eight_bytes = <[u8; 8]>::default();
        for (in_byte, out_byte) in eight_bytes.iter_mut().zip(forgotten.0) {
            *in_byte = out_byte;
        }

        u64::from_le_bytes(eight_bytes)
    }
}

impl From<u64> for Forgotten {
    fn from(u: u64) -> Self {
        let bytes = u.to_le_bytes();

        let mut six_bytes = [0; 6];
        for (in_byte, out_byte) in six_bytes.iter_mut().zip(&bytes[..6]) {
            *in_byte = *out_byte;
        }

        Self(six_bytes)
    }
}

#[cfg(any(test, feature = "arbitrary"))]
mod arbitrary {
    use poseidon377::Fq;

    use super::Hash;

    impl proptest::arbitrary::Arbitrary for Hash {
        type Parameters = ();

        fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
            HashStrategy
        }

        type Strategy = HashStrategy;
    }

    #[derive(Clone, Copy, Debug, PartialEq, Eq, Default)]
    pub struct HashStrategy;

    impl proptest::strategy::Strategy for HashStrategy {
        type Tree = proptest::strategy::Just<Hash>;

        type Value = Hash;

        fn new_tree(
            &self,
            runner: &mut proptest::test_runner::TestRunner,
        ) -> proptest::strategy::NewTree<Self> {
            use proptest::prelude::RngCore;
            let rng = runner.rng();
            let mut bytes = [0u8; 32];
            rng.fill_bytes(&mut bytes);
            Ok(proptest::strategy::Just(Hash(Fq::from_le_bytes_mod_order(
                &bytes,
            ))))
        }
    }
}

#[cfg(test)]
mod test {
    #[test]
    fn forgotten_increments() {
        use super::Forgotten;

        let mut last = Forgotten::default();
        for _ in 0..10 {
            let next = last.next();
            assert_eq!(u64::from(next), u64::from(last) + 1);
            last = next;
        }
    }
}