penumbra_tct/internal/frontier/
node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
use std::{fmt::Debug, sync::Arc};

use serde::{Deserialize, Serialize};

use crate::prelude::*;

/// A frontier of a node in a tree, into which items can be inserted.
#[derive(Clone, Derivative, Serialize, Deserialize)]
#[serde(bound(serialize = "Child: Serialize, Child::Complete: Serialize"))]
#[serde(bound(deserialize = "Child: Deserialize<'de>, Child::Complete: Deserialize<'de>"))]
#[derivative(Debug(bound = "Child: Debug, Child::Complete: Debug"))]
pub struct Node<Child: Focus> {
    #[derivative(PartialEq = "ignore", Debug)]
    #[serde(skip)]
    hash: CachedHash,
    #[serde(skip)]
    forgotten: [Forgotten; 4],
    siblings: Three<Arc<Insert<Child::Complete>>>,
    focus: Arc<Child>,
}

impl<Child: Focus> Node<Child> {
    /// Construct a new node from parts.
    pub(crate) fn from_parts(
        forgotten: [Forgotten; 4],
        siblings: Three<Arc<Insert<Child::Complete>>>,
        focus: Child,
    ) -> Self
    where
        Child: Frontier + GetHash,
    {
        Self {
            hash: Default::default(),
            forgotten,
            siblings,
            focus: Arc::new(focus),
        }
    }

    /// Get the list of forgotten counts for the children of this node.
    #[inline]
    pub(crate) fn forgotten(&self) -> &[Forgotten; 4] {
        &self.forgotten
    }
}

impl<Child: Focus> Height for Node<Child> {
    type Height = Succ<Child::Height>;
}

impl<Child: Focus> GetHash for Node<Child> {
    fn hash(&self) -> Hash {
        // Extract the hashes of an array of `Insert<T>`s.
        fn hashes_of_all<T: GetHash, const N: usize>(full: [&Arc<Insert<T>>; N]) -> [Hash; N] {
            full.map(|hash_or_t| match &**hash_or_t {
                Insert::Hash(hash) => *hash,
                Insert::Keep(t) => t.hash(),
            })
        }

        self.hash.set_if_empty(|| {
            // Get the four hashes of the node's siblings + focus, *in that order*, adding
            // zero-padding when there are less than four elements
            let zero = Hash::zero();
            let focus = self.focus.hash();

            let (a, b, c, d) = match self.siblings.elems() {
                Elems::_0([]) => (focus, zero, zero, zero),
                Elems::_1(full) => {
                    let [a] = hashes_of_all(full);
                    (a, focus, zero, zero)
                }
                Elems::_2(full) => {
                    let [a, b] = hashes_of_all(full);
                    (a, b, focus, zero)
                }
                Elems::_3(full) => {
                    let [a, b, c] = hashes_of_all(full);
                    (a, b, c, focus)
                }
            };

            // Compute the hash of the node based on its height and the height of its children,
            // and cache it in the node
            Hash::node(<Self as Height>::Height::HEIGHT, a, b, c, d)
        })
    }

    #[inline]
    fn cached_hash(&self) -> Option<Hash> {
        self.hash.get()
    }

    #[inline]
    fn clear_cached_hash(&self) {
        self.hash.clear();
    }
}

impl<Child: Focus + Clone> Focus for Node<Child>
where
    Child::Complete: Clone,
{
    type Complete = complete::Node<Child::Complete>;

    #[inline]
    fn finalize_owned(self) -> Insert<Self::Complete> {
        let one = || Insert::Hash(Hash::one());

        // Avoid cloning the `Arc` when possible
        fn get<T: Clone>(arc: Arc<T>) -> T {
            Arc::try_unwrap(arc).unwrap_or_else(|arc| (*arc).clone())
        }

        let Self {
            hash: _, // We ignore the hash because we're going to recompute it
            forgotten,
            siblings,
            focus,
        } = self;

        // This avoids cloning the focus when we have the only reference to it
        let focus = Arc::try_unwrap(focus).unwrap_or_else(|arc| (*arc).clone());

        // Push the focus into the siblings, and fill any empty children with the *ONE* hash, which
        // causes the hash of a complete node to deliberately differ from that of a frontier node,
        // which uses *ZERO* padding
        complete::Node::from_children_or_else_hash(
            forgotten,
            match siblings.push(Arc::new(focus.finalize_owned())) {
                Err([a, b, c, d]) => [get(a), get(b), get(c), get(d)],
                Ok(siblings) => match siblings.into_elems() {
                    IntoElems::_3([a, b, c]) => [get(a), get(b), get(c), one()],
                    IntoElems::_2([a, b]) => [get(a), get(b), one(), one()],
                    IntoElems::_1([a]) => [get(a), one(), one(), one()],
                    IntoElems::_0([]) => [one(), one(), one(), one()],
                },
            },
        )
    }
}

impl<Child: Clone> Frontier for Node<Child>
where
    Child: Focus + Frontier + GetHash,
    Child::Complete: Clone,
{
    type Item = Child::Item;

    #[inline]
    fn new(item: Self::Item) -> Self {
        let focus = Child::new(item);
        let siblings = Three::new();
        Self::from_parts(Default::default(), siblings, focus)
    }

    #[inline]
    fn update<T>(&mut self, f: impl FnOnce(&mut Self::Item) -> T) -> Option<T> {
        let before_hash = self.focus.cached_hash();
        let output = Arc::make_mut(&mut self.focus).update(f);
        let after_hash = self.focus.cached_hash();

        // If the cached hash of the focus changed, clear the cached hash here, because it is now
        // invalid and needs to be recalculated
        if before_hash != after_hash {
            self.hash = CachedHash::default();
        }

        output
    }

    #[inline]
    fn focus(&self) -> Option<&Self::Item> {
        self.focus.focus()
    }

    #[inline]
    fn insert_owned(self, item: Self::Item) -> Result<Self, Full<Self>> {
        let Self {
            hash: _, // We ignore the cached hash because it changes on insertion
            forgotten,
            siblings,
            focus,
        } = self;

        // This avoids cloning the focus when we have the only reference to it
        let focus = Arc::try_unwrap(focus).unwrap_or_else(|arc| (*arc).clone());

        match focus.insert_owned(item) {
            // We successfully inserted at the focus, so siblings don't need to be changed
            Ok(focus) => Ok(Self::from_parts(forgotten, siblings, focus)),

            // We couldn't insert at the focus because it was full, so we need to move our path
            // rightwards and insert into a newly created focus
            Err(Full {
                item,
                complete: sibling,
            }) => match siblings.push(Arc::new(sibling)) {
                // We had enough room to add another sibling, so we set our focus to a new focus
                // containing only the item we couldn't previously insert
                Ok(siblings) => Ok(Self::from_parts(forgotten, siblings, Child::new(item))),

                // We didn't have enough room to add another sibling, so we return a complete node
                // as a carry, to be propagated up above us and added to some ancestor segment's
                // siblings, along with the item we couldn't insert
                Err(children) => Err(Full {
                    item,
                    complete: complete::Node::from_children_or_else_hash(
                        forgotten,
                        children
                            // Avoid cloning the `Arc`s when possible
                            .map(|arc| Arc::try_unwrap(arc).unwrap_or_else(|arc| (*arc).clone())),
                    ),
                }),
            },
        }
    }

    #[inline]
    fn is_full(&self) -> bool {
        self.siblings.is_full() && self.focus.is_full()
    }
}

impl<Child: Focus + GetPosition> GetPosition for Node<Child> {
    #[inline]
    fn position(&self) -> Option<u64> {
        let child_capacity: u64 = 4u64.pow(Child::Height::HEIGHT.into());
        let siblings = self.siblings.len() as u64;

        if let Some(focus_position) = self.focus.position() {
            // next insertion would be at: siblings * 4^height + focus_position
            // because we don't need to add a new child
            Some(siblings * child_capacity + focus_position)
        } else if siblings + 1 < 4
        /* this means adding a new child is possible */
        {
            // next insertion would be at: (siblings + 1) * 4^height
            // because we have to add a new child, and we can
            Some((siblings + 1) * child_capacity)
        } else {
            None
        }
    }
}

impl<Child: Focus + Witness> Witness for Node<Child>
where
    Child::Complete: Witness,
{
    fn witness(&self, index: impl Into<u64>) -> Option<(AuthPath<Self>, Hash)> {
        use Elems::*;
        use WhichWay::*;

        let index = index.into();

        // The zero padding hash for frontier nodes
        let zero = Hash::zero();

        // Which direction should we go from this node?
        let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);

        let (siblings, (child, leaf)) = match (self.siblings.elems(), &self.focus) {
            // Zero siblings to the left
            (_0([]), a) => match which_way {
                Leftmost => (
                    // All sibling hashes are default for the left, right, and rightmost
                    [zero; 3],
                    // Authentication path is to the leftmost child
                    a.witness(index)?,
                ),
                Left | Right | Rightmost => return None,
            },

            // One sibling to the left
            (_1([a]), b) => match which_way {
                Leftmost => (
                    // Sibling hashes are the left child and default for right and rightmost
                    [b.hash(), zero, zero],
                    // Authentication path is to the leftmost child
                    (**a).as_ref().keep()?.witness(index)?,
                ),
                Left => (
                    // Sibling hashes are the leftmost child and default for right and rightmost
                    [a.hash(), zero, zero],
                    // Authentication path is to the left child
                    b.witness(index)?,
                ),
                Right | Rightmost => return None,
            },

            // Two siblings to the left
            (_2([a, b]), c) => match which_way {
                Leftmost => (
                    // Sibling hashes are the left child and right child and default for rightmost
                    [b.hash(), c.hash(), zero],
                    // Authentication path is to the leftmost child
                    (**a).as_ref().keep()?.witness(index)?,
                ),
                Left => (
                    // Sibling hashes are the leftmost child and right child and default for rightmost
                    [a.hash(), c.hash(), zero],
                    // Authentication path is to the left child
                    (**b).as_ref().keep()?.witness(index)?,
                ),
                Right => (
                    // Sibling hashes are the leftmost child and left child and default for rightmost
                    [a.hash(), b.hash(), zero],
                    // Authentication path is to the right child
                    c.witness(index)?,
                ),
                Rightmost => return None,
            },

            // Three siblings to the left
            (_3([a, b, c]), d) => match which_way {
                Leftmost => (
                    // Sibling hashes are the left child, right child, and rightmost child
                    [b.hash(), c.hash(), d.hash()],
                    // Authentication path is to the leftmost child
                    (**a).as_ref().keep()?.witness(index)?,
                ),
                Left => (
                    // Sibling hashes are the leftmost child, right child, and rightmost child
                    [a.hash(), c.hash(), d.hash()],
                    // Authentication path is to the left child
                    (**b).as_ref().keep()?.witness(index)?,
                ),
                Right => (
                    // Sibling hashes are the leftmost child, left child, and rightmost child
                    [a.hash(), b.hash(), d.hash()],
                    // Authentication path is to the right child
                    (**c).as_ref().keep()?.witness(index)?,
                ),
                Rightmost => (
                    // Sibling hashes are the leftmost child, left child, and right child
                    [a.hash(), b.hash(), c.hash()],
                    // Authentication path is to the rightmost child
                    d.witness(index)?,
                ),
            },
        };

        Some((path::Node { siblings, child }, leaf))
    }
}

impl<Child: Focus + Forget + Clone> Forget for Node<Child>
where
    Child::Complete: ForgetOwned + Clone,
{
    fn forget(&mut self, forgotten: Option<Forgotten>, index: impl Into<u64>) -> bool {
        use ElemsMut::*;
        use WhichWay::*;

        let index = index.into();

        // Which direction should we forget from this node?
        let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);

        let was_forgotten = match (self.siblings.elems_mut(), &mut self.focus) {
            (_0([]), a) => match which_way {
                Leftmost => Arc::make_mut(a).forget(forgotten, index),
                Left | Right | Rightmost => false,
            },
            (_1([a]), b) => match which_way {
                Leftmost => Arc::make_mut(a).forget(forgotten, index),
                Left => Arc::make_mut(b).forget(forgotten, index),
                Right | Rightmost => false,
            },
            (_2([a, b]), c) => match which_way {
                Leftmost => Arc::make_mut(a).forget(forgotten, index),
                Left => Arc::make_mut(b).forget(forgotten, index),
                Right => Arc::make_mut(c).forget(forgotten, index),
                Rightmost => false,
            },
            (_3([a, b, c]), d) => match which_way {
                Leftmost => Arc::make_mut(a).forget(forgotten, index),
                Left => Arc::make_mut(b).forget(forgotten, index),
                Right => Arc::make_mut(c).forget(forgotten, index),
                Rightmost => Arc::make_mut(d).forget(forgotten, index),
            },
        };

        // If we forgot something, mark the location at which we forgot it
        if was_forgotten {
            if let Some(forgotten) = forgotten {
                self.forgotten[which_way] = forgotten.next();
            }
        }

        was_forgotten
    }
}

impl<'tree, Child: Focus + GetPosition + Height + structure::Any<'tree>> structure::Any<'tree>
    for Node<Child>
where
    Child::Complete: structure::Any<'tree>,
{
    fn kind(&self) -> Kind {
        Kind::Internal {
            height: <Self as Height>::Height::HEIGHT,
        }
    }

    fn forgotten(&self) -> Forgotten {
        self.forgotten().iter().copied().max().unwrap_or_default()
    }

    fn children(&'tree self) -> Vec<HashOrNode<'tree>> {
        let children = self
            .siblings
            .iter()
            .map(|child| (**child).as_ref().map(|child| child as &dyn structure::Any))
            .chain(std::iter::once(Insert::Keep(
                &*self.focus as &dyn structure::Any,
            )));

        self.forgotten
            .iter()
            .copied()
            .zip(children)
            .map(|(forgotten, child)| match child {
                Insert::Keep(node) => HashOrNode::Node(node),
                Insert::Hash(hash) => HashOrNode::Hash(HashedNode {
                    hash,
                    forgotten,
                    height: <Child as Height>::Height::HEIGHT,
                }),
            })
            .collect()
    }
}

impl<Child: Height + Focus + OutOfOrder + Clone> OutOfOrder for Node<Child>
where
    Child::Complete: OutOfOrderOwned + Clone,
{
    fn uninitialized(position: Option<u64>, forgotten: Forgotten) -> Self {
        // The number of siblings is the bits of the position at this node's height
        let siblings_len = if let Some(position) = position {
            // We subtract 1 from the position, because the position is 1 + the position of the
            // latest commitment, and we want to know what the arity of this node is, not the
            // arity it will have after adding something -- note that the position for a node will
            // never be zero, because tiers and tops steal these cases
            debug_assert!(position > 0, "position for frontier node is never zero");
            let path_bits = position - 1;
            (path_bits >> (Child::Height::HEIGHT * 2)) & 0b11
        } else {
            // When the position is `None`, we add all siblings, because the tree is entirely full
            0b11
        };

        let mut siblings = Three::new();
        for _ in 0..siblings_len {
            siblings =
                if let Ok(siblings) = siblings.push(Arc::new(Insert::Hash(Hash::uninitialized()))) {
                    siblings
                } else {
                    unreachable!("for all x, 0b11 & x < 4, so siblings can't overflow")
                }
        }

        let focus = Arc::new(Child::uninitialized(position, forgotten));
        let hash = CachedHash::default();
        let forgotten = [forgotten; 4];

        Node {
            siblings,
            focus,
            hash,
            forgotten,
        }
    }

    fn uninitialized_out_of_order_insert_commitment(
        &mut self,
        index: u64,
        commitment: StateCommitment,
    ) {
        use ElemsMut::*;
        use WhichWay::*;

        let (which_way, index) = WhichWay::at(<Self as Height>::Height::HEIGHT, index);

        // When we recur down into a sibling, we invoke the owned version of `insert_commitment`,
        // and we need a little wrapper to handle the impedance mismatch between `&mut` and owned
        // calling convention:
        fn recur_sibling<Sibling>(
            sibling: &mut Arc<Insert<Sibling>>,
            index: u64,
            commitment: StateCommitment,
        ) where
            Sibling: OutOfOrderOwned + Clone,
        {
            let sibling = Arc::make_mut(sibling);

            *sibling = Insert::Keep(Sibling::uninitialized_out_of_order_insert_commitment_owned(
                // Very temporarily swap out sibling for the uninitialized hash, so we can
                // manipulate it as an owned value (we immediately put something legit back into it,
                // in this very line)
                std::mem::replace(sibling, Insert::Hash(Hash::uninitialized())),
                index,
                commitment,
            ));
        }

        match (self.siblings.elems_mut(), &mut self.focus) {
            (_0([]), a) => match which_way {
                Leftmost => {
                    Arc::make_mut(a).uninitialized_out_of_order_insert_commitment(index, commitment)
                }
                Left | Right | Rightmost => {}
            },
            (_1([a]), b) => match which_way {
                Leftmost => recur_sibling(a, index, commitment),
                Left => {
                    Arc::make_mut(b).uninitialized_out_of_order_insert_commitment(index, commitment)
                }
                Right | Rightmost => {}
            },
            (_2([a, b]), c) => match which_way {
                Leftmost => recur_sibling(a, index, commitment),
                Left => recur_sibling(b, index, commitment),
                Right => {
                    Arc::make_mut(c).uninitialized_out_of_order_insert_commitment(index, commitment)
                }
                Rightmost => {}
            },
            (_3([a, b, c]), d) => match which_way {
                Leftmost => recur_sibling(a, index, commitment),
                Left => recur_sibling(b, index, commitment),
                Right => recur_sibling(c, index, commitment),
                Rightmost => {
                    Arc::make_mut(d).uninitialized_out_of_order_insert_commitment(index, commitment)
                }
            },
        }
    }
}

impl<Child: Focus + UncheckedSetHash + Clone> UncheckedSetHash for Node<Child>
where
    Child::Complete: UncheckedSetHash + Clone,
{
    fn unchecked_set_hash(&mut self, index: u64, height: u8, hash: Hash) {
        use std::cmp::Ordering::*;
        use ElemsMut::*;
        use WhichWay::*;

        // For a sibling, which may be hashed, we need to handle both the possibility that it
        // exists, or it is hashed
        fn recur_sibling<T: Height + UncheckedSetHash + Clone>(
            insert: &mut Arc<Insert<T>>,
            index: u64,
            height: u8,
            hash: Hash,
        ) {
            match Arc::make_mut(insert) {
                // Recur normally if the sibling exists
                Insert::Keep(item) => item.unchecked_set_hash(index, height, hash),
                // If the sibling is hashed and the height is right, set the hash there
                Insert::Hash(this_hash) => {
                    if height == <T as Height>::Height::HEIGHT {
                        *this_hash = hash;
                    }
                }
            };
        }

        match height.cmp(&Self::Height::HEIGHT) {
            Greater => panic!("height too large when setting hash: {height}"),
            // Set the hash here
            Equal => self.hash = hash.into(),
            // Set the hash below
            Less => {
                let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);

                match (self.siblings.elems_mut(), &mut self.focus) {
                    (_0([]), a) => match which_way {
                        Leftmost => Arc::make_mut(a).unchecked_set_hash(index, height, hash),
                        Left | Right | Rightmost => {}
                    },
                    (_1([a]), b) => match which_way {
                        Leftmost => recur_sibling(a, index, height, hash),
                        Left => Arc::make_mut(b).unchecked_set_hash(index, height, hash),
                        Right | Rightmost => {}
                    },
                    (_2([a, b]), c) => match which_way {
                        Leftmost => recur_sibling(a, index, height, hash),
                        Left => recur_sibling(b, index, height, hash),
                        Right => Arc::make_mut(c).unchecked_set_hash(index, height, hash),
                        Rightmost => {}
                    },
                    (_3([a, b, c]), d) => match which_way {
                        Leftmost => recur_sibling(a, index, height, hash),
                        Left => recur_sibling(b, index, height, hash),
                        Right => recur_sibling(c, index, height, hash),
                        Rightmost => Arc::make_mut(d).unchecked_set_hash(index, height, hash),
                    },
                }
            }
        }
    }

    fn finish_initialize(&mut self) {
        // Finish the focus
        Arc::make_mut(&mut self.focus).finish_initialize();

        // Finish each of the siblings
        for sibling in self.siblings.iter_mut() {
            match Arc::make_mut(sibling) {
                Insert::Keep(item) => item.finish_initialize(),
                Insert::Hash(hash) => {
                    if hash.is_uninitialized() {
                        // Siblings are complete, so we finish them using `Hash::one()`
                        *hash = Hash::one();
                    }
                }
            }
        }

        // Unlike in the complete case, we don't need to touch the hash, because it's a
        // `CachedHash`, so we've never set it to an uninitialized value; we've only ever touched it
        // if we've set it to a real hash
    }
}