penumbra_tct/internal/frontier/node.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
use std::{fmt::Debug, sync::Arc};
use serde::{Deserialize, Serialize};
use crate::prelude::*;
/// A frontier of a node in a tree, into which items can be inserted.
#[derive(Clone, Derivative, Serialize, Deserialize)]
#[serde(bound(serialize = "Child: Serialize, Child::Complete: Serialize"))]
#[serde(bound(deserialize = "Child: Deserialize<'de>, Child::Complete: Deserialize<'de>"))]
#[derivative(Debug(bound = "Child: Debug, Child::Complete: Debug"))]
pub struct Node<Child: Focus> {
#[derivative(PartialEq = "ignore", Debug)]
#[serde(skip)]
hash: CachedHash,
#[serde(skip)]
forgotten: [Forgotten; 4],
siblings: Three<Arc<Insert<Child::Complete>>>,
focus: Arc<Child>,
}
impl<Child: Focus> Node<Child> {
/// Construct a new node from parts.
pub(crate) fn from_parts(
forgotten: [Forgotten; 4],
siblings: Three<Arc<Insert<Child::Complete>>>,
focus: Child,
) -> Self
where
Child: Frontier + GetHash,
{
Self {
hash: Default::default(),
forgotten,
siblings,
focus: Arc::new(focus),
}
}
/// Get the list of forgotten counts for the children of this node.
#[inline]
pub(crate) fn forgotten(&self) -> &[Forgotten; 4] {
&self.forgotten
}
}
impl<Child: Focus> Height for Node<Child> {
type Height = Succ<Child::Height>;
}
impl<Child: Focus> GetHash for Node<Child> {
fn hash(&self) -> Hash {
// Extract the hashes of an array of `Insert<T>`s.
fn hashes_of_all<T: GetHash, const N: usize>(full: [&Arc<Insert<T>>; N]) -> [Hash; N] {
full.map(|hash_or_t| match &**hash_or_t {
Insert::Hash(hash) => *hash,
Insert::Keep(t) => t.hash(),
})
}
self.hash.set_if_empty(|| {
// Get the four hashes of the node's siblings + focus, *in that order*, adding
// zero-padding when there are less than four elements
let zero = Hash::zero();
let focus = self.focus.hash();
let (a, b, c, d) = match self.siblings.elems() {
Elems::_0([]) => (focus, zero, zero, zero),
Elems::_1(full) => {
let [a] = hashes_of_all(full);
(a, focus, zero, zero)
}
Elems::_2(full) => {
let [a, b] = hashes_of_all(full);
(a, b, focus, zero)
}
Elems::_3(full) => {
let [a, b, c] = hashes_of_all(full);
(a, b, c, focus)
}
};
// Compute the hash of the node based on its height and the height of its children,
// and cache it in the node
Hash::node(<Self as Height>::Height::HEIGHT, a, b, c, d)
})
}
#[inline]
fn cached_hash(&self) -> Option<Hash> {
self.hash.get()
}
#[inline]
fn clear_cached_hash(&self) {
self.hash.clear();
}
}
impl<Child: Focus + Clone> Focus for Node<Child>
where
Child::Complete: Clone,
{
type Complete = complete::Node<Child::Complete>;
#[inline]
fn finalize_owned(self) -> Insert<Self::Complete> {
let one = || Insert::Hash(Hash::one());
// Avoid cloning the `Arc` when possible
fn get<T: Clone>(arc: Arc<T>) -> T {
Arc::try_unwrap(arc).unwrap_or_else(|arc| (*arc).clone())
}
let Self {
hash: _, // We ignore the hash because we're going to recompute it
forgotten,
siblings,
focus,
} = self;
// This avoids cloning the focus when we have the only reference to it
let focus = Arc::try_unwrap(focus).unwrap_or_else(|arc| (*arc).clone());
// Push the focus into the siblings, and fill any empty children with the *ONE* hash, which
// causes the hash of a complete node to deliberately differ from that of a frontier node,
// which uses *ZERO* padding
complete::Node::from_children_or_else_hash(
forgotten,
match siblings.push(Arc::new(focus.finalize_owned())) {
Err([a, b, c, d]) => [get(a), get(b), get(c), get(d)],
Ok(siblings) => match siblings.into_elems() {
IntoElems::_3([a, b, c]) => [get(a), get(b), get(c), one()],
IntoElems::_2([a, b]) => [get(a), get(b), one(), one()],
IntoElems::_1([a]) => [get(a), one(), one(), one()],
IntoElems::_0([]) => [one(), one(), one(), one()],
},
},
)
}
}
impl<Child: Clone> Frontier for Node<Child>
where
Child: Focus + Frontier + GetHash,
Child::Complete: Clone,
{
type Item = Child::Item;
#[inline]
fn new(item: Self::Item) -> Self {
let focus = Child::new(item);
let siblings = Three::new();
Self::from_parts(Default::default(), siblings, focus)
}
#[inline]
fn update<T>(&mut self, f: impl FnOnce(&mut Self::Item) -> T) -> Option<T> {
let before_hash = self.focus.cached_hash();
let output = Arc::make_mut(&mut self.focus).update(f);
let after_hash = self.focus.cached_hash();
// If the cached hash of the focus changed, clear the cached hash here, because it is now
// invalid and needs to be recalculated
if before_hash != after_hash {
self.hash = CachedHash::default();
}
output
}
#[inline]
fn focus(&self) -> Option<&Self::Item> {
self.focus.focus()
}
#[inline]
fn insert_owned(self, item: Self::Item) -> Result<Self, Full<Self>> {
let Self {
hash: _, // We ignore the cached hash because it changes on insertion
forgotten,
siblings,
focus,
} = self;
// This avoids cloning the focus when we have the only reference to it
let focus = Arc::try_unwrap(focus).unwrap_or_else(|arc| (*arc).clone());
match focus.insert_owned(item) {
// We successfully inserted at the focus, so siblings don't need to be changed
Ok(focus) => Ok(Self::from_parts(forgotten, siblings, focus)),
// We couldn't insert at the focus because it was full, so we need to move our path
// rightwards and insert into a newly created focus
Err(Full {
item,
complete: sibling,
}) => match siblings.push(Arc::new(sibling)) {
// We had enough room to add another sibling, so we set our focus to a new focus
// containing only the item we couldn't previously insert
Ok(siblings) => Ok(Self::from_parts(forgotten, siblings, Child::new(item))),
// We didn't have enough room to add another sibling, so we return a complete node
// as a carry, to be propagated up above us and added to some ancestor segment's
// siblings, along with the item we couldn't insert
Err(children) => Err(Full {
item,
complete: complete::Node::from_children_or_else_hash(
forgotten,
children
// Avoid cloning the `Arc`s when possible
.map(|arc| Arc::try_unwrap(arc).unwrap_or_else(|arc| (*arc).clone())),
),
}),
},
}
}
#[inline]
fn is_full(&self) -> bool {
self.siblings.is_full() && self.focus.is_full()
}
}
impl<Child: Focus + GetPosition> GetPosition for Node<Child> {
#[inline]
fn position(&self) -> Option<u64> {
let child_capacity: u64 = 4u64.pow(Child::Height::HEIGHT.into());
let siblings = self.siblings.len() as u64;
if let Some(focus_position) = self.focus.position() {
// next insertion would be at: siblings * 4^height + focus_position
// because we don't need to add a new child
Some(siblings * child_capacity + focus_position)
} else if siblings + 1 < 4
/* this means adding a new child is possible */
{
// next insertion would be at: (siblings + 1) * 4^height
// because we have to add a new child, and we can
Some((siblings + 1) * child_capacity)
} else {
None
}
}
}
impl<Child: Focus + Witness> Witness for Node<Child>
where
Child::Complete: Witness,
{
fn witness(&self, index: impl Into<u64>) -> Option<(AuthPath<Self>, Hash)> {
use Elems::*;
use WhichWay::*;
let index = index.into();
// The zero padding hash for frontier nodes
let zero = Hash::zero();
// Which direction should we go from this node?
let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);
let (siblings, (child, leaf)) = match (self.siblings.elems(), &self.focus) {
// Zero siblings to the left
(_0([]), a) => match which_way {
Leftmost => (
// All sibling hashes are default for the left, right, and rightmost
[zero; 3],
// Authentication path is to the leftmost child
a.witness(index)?,
),
Left | Right | Rightmost => return None,
},
// One sibling to the left
(_1([a]), b) => match which_way {
Leftmost => (
// Sibling hashes are the left child and default for right and rightmost
[b.hash(), zero, zero],
// Authentication path is to the leftmost child
(**a).as_ref().keep()?.witness(index)?,
),
Left => (
// Sibling hashes are the leftmost child and default for right and rightmost
[a.hash(), zero, zero],
// Authentication path is to the left child
b.witness(index)?,
),
Right | Rightmost => return None,
},
// Two siblings to the left
(_2([a, b]), c) => match which_way {
Leftmost => (
// Sibling hashes are the left child and right child and default for rightmost
[b.hash(), c.hash(), zero],
// Authentication path is to the leftmost child
(**a).as_ref().keep()?.witness(index)?,
),
Left => (
// Sibling hashes are the leftmost child and right child and default for rightmost
[a.hash(), c.hash(), zero],
// Authentication path is to the left child
(**b).as_ref().keep()?.witness(index)?,
),
Right => (
// Sibling hashes are the leftmost child and left child and default for rightmost
[a.hash(), b.hash(), zero],
// Authentication path is to the right child
c.witness(index)?,
),
Rightmost => return None,
},
// Three siblings to the left
(_3([a, b, c]), d) => match which_way {
Leftmost => (
// Sibling hashes are the left child, right child, and rightmost child
[b.hash(), c.hash(), d.hash()],
// Authentication path is to the leftmost child
(**a).as_ref().keep()?.witness(index)?,
),
Left => (
// Sibling hashes are the leftmost child, right child, and rightmost child
[a.hash(), c.hash(), d.hash()],
// Authentication path is to the left child
(**b).as_ref().keep()?.witness(index)?,
),
Right => (
// Sibling hashes are the leftmost child, left child, and rightmost child
[a.hash(), b.hash(), d.hash()],
// Authentication path is to the right child
(**c).as_ref().keep()?.witness(index)?,
),
Rightmost => (
// Sibling hashes are the leftmost child, left child, and right child
[a.hash(), b.hash(), c.hash()],
// Authentication path is to the rightmost child
d.witness(index)?,
),
},
};
Some((path::Node { siblings, child }, leaf))
}
}
impl<Child: Focus + Forget + Clone> Forget for Node<Child>
where
Child::Complete: ForgetOwned + Clone,
{
fn forget(&mut self, forgotten: Option<Forgotten>, index: impl Into<u64>) -> bool {
use ElemsMut::*;
use WhichWay::*;
let index = index.into();
// Which direction should we forget from this node?
let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);
let was_forgotten = match (self.siblings.elems_mut(), &mut self.focus) {
(_0([]), a) => match which_way {
Leftmost => Arc::make_mut(a).forget(forgotten, index),
Left | Right | Rightmost => false,
},
(_1([a]), b) => match which_way {
Leftmost => Arc::make_mut(a).forget(forgotten, index),
Left => Arc::make_mut(b).forget(forgotten, index),
Right | Rightmost => false,
},
(_2([a, b]), c) => match which_way {
Leftmost => Arc::make_mut(a).forget(forgotten, index),
Left => Arc::make_mut(b).forget(forgotten, index),
Right => Arc::make_mut(c).forget(forgotten, index),
Rightmost => false,
},
(_3([a, b, c]), d) => match which_way {
Leftmost => Arc::make_mut(a).forget(forgotten, index),
Left => Arc::make_mut(b).forget(forgotten, index),
Right => Arc::make_mut(c).forget(forgotten, index),
Rightmost => Arc::make_mut(d).forget(forgotten, index),
},
};
// If we forgot something, mark the location at which we forgot it
if was_forgotten {
if let Some(forgotten) = forgotten {
self.forgotten[which_way] = forgotten.next();
}
}
was_forgotten
}
}
impl<'tree, Child: Focus + GetPosition + Height + structure::Any<'tree>> structure::Any<'tree>
for Node<Child>
where
Child::Complete: structure::Any<'tree>,
{
fn kind(&self) -> Kind {
Kind::Internal {
height: <Self as Height>::Height::HEIGHT,
}
}
fn forgotten(&self) -> Forgotten {
self.forgotten().iter().copied().max().unwrap_or_default()
}
fn children(&'tree self) -> Vec<HashOrNode<'tree>> {
let children = self
.siblings
.iter()
.map(|child| (**child).as_ref().map(|child| child as &dyn structure::Any))
.chain(std::iter::once(Insert::Keep(
&*self.focus as &dyn structure::Any,
)));
self.forgotten
.iter()
.copied()
.zip(children)
.map(|(forgotten, child)| match child {
Insert::Keep(node) => HashOrNode::Node(node),
Insert::Hash(hash) => HashOrNode::Hash(HashedNode {
hash,
forgotten,
height: <Child as Height>::Height::HEIGHT,
}),
})
.collect()
}
}
impl<Child: Height + Focus + OutOfOrder + Clone> OutOfOrder for Node<Child>
where
Child::Complete: OutOfOrderOwned + Clone,
{
fn uninitialized(position: Option<u64>, forgotten: Forgotten) -> Self {
// The number of siblings is the bits of the position at this node's height
let siblings_len = if let Some(position) = position {
// We subtract 1 from the position, because the position is 1 + the position of the
// latest commitment, and we want to know what the arity of this node is, not the
// arity it will have after adding something -- note that the position for a node will
// never be zero, because tiers and tops steal these cases
debug_assert!(position > 0, "position for frontier node is never zero");
let path_bits = position - 1;
(path_bits >> (Child::Height::HEIGHT * 2)) & 0b11
} else {
// When the position is `None`, we add all siblings, because the tree is entirely full
0b11
};
let mut siblings = Three::new();
for _ in 0..siblings_len {
siblings =
if let Ok(siblings) = siblings.push(Arc::new(Insert::Hash(Hash::uninitialized()))) {
siblings
} else {
unreachable!("for all x, 0b11 & x < 4, so siblings can't overflow")
}
}
let focus = Arc::new(Child::uninitialized(position, forgotten));
let hash = CachedHash::default();
let forgotten = [forgotten; 4];
Node {
siblings,
focus,
hash,
forgotten,
}
}
fn uninitialized_out_of_order_insert_commitment(
&mut self,
index: u64,
commitment: StateCommitment,
) {
use ElemsMut::*;
use WhichWay::*;
let (which_way, index) = WhichWay::at(<Self as Height>::Height::HEIGHT, index);
// When we recur down into a sibling, we invoke the owned version of `insert_commitment`,
// and we need a little wrapper to handle the impedance mismatch between `&mut` and owned
// calling convention:
fn recur_sibling<Sibling>(
sibling: &mut Arc<Insert<Sibling>>,
index: u64,
commitment: StateCommitment,
) where
Sibling: OutOfOrderOwned + Clone,
{
let sibling = Arc::make_mut(sibling);
*sibling = Insert::Keep(Sibling::uninitialized_out_of_order_insert_commitment_owned(
// Very temporarily swap out sibling for the uninitialized hash, so we can
// manipulate it as an owned value (we immediately put something legit back into it,
// in this very line)
std::mem::replace(sibling, Insert::Hash(Hash::uninitialized())),
index,
commitment,
));
}
match (self.siblings.elems_mut(), &mut self.focus) {
(_0([]), a) => match which_way {
Leftmost => {
Arc::make_mut(a).uninitialized_out_of_order_insert_commitment(index, commitment)
}
Left | Right | Rightmost => {}
},
(_1([a]), b) => match which_way {
Leftmost => recur_sibling(a, index, commitment),
Left => {
Arc::make_mut(b).uninitialized_out_of_order_insert_commitment(index, commitment)
}
Right | Rightmost => {}
},
(_2([a, b]), c) => match which_way {
Leftmost => recur_sibling(a, index, commitment),
Left => recur_sibling(b, index, commitment),
Right => {
Arc::make_mut(c).uninitialized_out_of_order_insert_commitment(index, commitment)
}
Rightmost => {}
},
(_3([a, b, c]), d) => match which_way {
Leftmost => recur_sibling(a, index, commitment),
Left => recur_sibling(b, index, commitment),
Right => recur_sibling(c, index, commitment),
Rightmost => {
Arc::make_mut(d).uninitialized_out_of_order_insert_commitment(index, commitment)
}
},
}
}
}
impl<Child: Focus + UncheckedSetHash + Clone> UncheckedSetHash for Node<Child>
where
Child::Complete: UncheckedSetHash + Clone,
{
fn unchecked_set_hash(&mut self, index: u64, height: u8, hash: Hash) {
use std::cmp::Ordering::*;
use ElemsMut::*;
use WhichWay::*;
// For a sibling, which may be hashed, we need to handle both the possibility that it
// exists, or it is hashed
fn recur_sibling<T: Height + UncheckedSetHash + Clone>(
insert: &mut Arc<Insert<T>>,
index: u64,
height: u8,
hash: Hash,
) {
match Arc::make_mut(insert) {
// Recur normally if the sibling exists
Insert::Keep(item) => item.unchecked_set_hash(index, height, hash),
// If the sibling is hashed and the height is right, set the hash there
Insert::Hash(this_hash) => {
if height == <T as Height>::Height::HEIGHT {
*this_hash = hash;
}
}
};
}
match height.cmp(&Self::Height::HEIGHT) {
Greater => panic!("height too large when setting hash: {height}"),
// Set the hash here
Equal => self.hash = hash.into(),
// Set the hash below
Less => {
let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);
match (self.siblings.elems_mut(), &mut self.focus) {
(_0([]), a) => match which_way {
Leftmost => Arc::make_mut(a).unchecked_set_hash(index, height, hash),
Left | Right | Rightmost => {}
},
(_1([a]), b) => match which_way {
Leftmost => recur_sibling(a, index, height, hash),
Left => Arc::make_mut(b).unchecked_set_hash(index, height, hash),
Right | Rightmost => {}
},
(_2([a, b]), c) => match which_way {
Leftmost => recur_sibling(a, index, height, hash),
Left => recur_sibling(b, index, height, hash),
Right => Arc::make_mut(c).unchecked_set_hash(index, height, hash),
Rightmost => {}
},
(_3([a, b, c]), d) => match which_way {
Leftmost => recur_sibling(a, index, height, hash),
Left => recur_sibling(b, index, height, hash),
Right => recur_sibling(c, index, height, hash),
Rightmost => Arc::make_mut(d).unchecked_set_hash(index, height, hash),
},
}
}
}
}
fn finish_initialize(&mut self) {
// Finish the focus
Arc::make_mut(&mut self.focus).finish_initialize();
// Finish each of the siblings
for sibling in self.siblings.iter_mut() {
match Arc::make_mut(sibling) {
Insert::Keep(item) => item.finish_initialize(),
Insert::Hash(hash) => {
if hash.is_uninitialized() {
// Siblings are complete, so we finish them using `Hash::one()`
*hash = Hash::one();
}
}
}
}
// Unlike in the complete case, we don't need to touch the hash, because it's a
// `CachedHash`, so we've never set it to an uninitialized value; we've only ever touched it
// if we've set it to a real hash
}
}