1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use serde::{Deserialize, Serialize};

use crate::prelude::*;

use super::super::frontier;

pub mod children;
pub use children::Children;

/// A complete sparse node in a tree, storing only the witnessed subtrees.
#[derive(Clone, Debug)]
pub struct Node<Child: Clone> {
    hash: Hash,
    forgotten: [Forgotten; 4],
    children: Children<Child>,
}

impl<Child: Serialize + Clone> Serialize for Node<Child> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        self.children.serialize(serializer)
    }
}

impl<'de, Child: Height + GetHash + Deserialize<'de> + Clone> Deserialize<'de> for Node<Child> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let children = Children::deserialize(deserializer)?;
        Ok(Self {
            hash: children.hash(),
            forgotten: Default::default(),
            children,
        })
    }
}

impl<Child: Height + Clone> Node<Child> {
    pub(in super::super) fn from_children_or_else_hash(
        forgotten: [Forgotten; 4],
        children: [Insert<Child>; 4],
    ) -> Insert<Self>
    where
        Child: GetHash,
    {
        match Children::try_from(children) {
            Ok(children) => Insert::Keep(Self {
                hash: children.hash(),
                forgotten,
                children,
            }),
            Err([a, b, c, d]) => {
                // If there were no witnessed children, compute a hash for this node based on the
                // node's height and the hashes of its children.
                Insert::Hash(Hash::node(<Self as Height>::Height::HEIGHT, a, b, c, d))
            }
        }
    }

    /// Get the children of this node as an array of either children or hashes.
    pub fn children(&self) -> [Insert<&Child>; 4] {
        self.children.children()
    }

    /// Get the forgotten versions of the children.
    pub fn forgotten(&self) -> [Forgotten; 4] {
        self.forgotten
    }
}

impl<Child: Height + Clone> Height for Node<Child> {
    type Height = Succ<Child::Height>;
}

impl<Child: Complete + Clone> Complete for Node<Child>
where
    Child::Focus: Clone,
{
    type Focus = frontier::Node<Child::Focus>;
}

impl<Child: Height + GetHash + Clone> GetHash for Node<Child> {
    #[inline]
    fn hash(&self) -> Hash {
        self.hash
    }

    #[inline]
    fn cached_hash(&self) -> Option<Hash> {
        Some(self.hash)
    }
}

impl<Child: GetHash + Witness + Clone> Witness for Node<Child> {
    #[inline]
    fn witness(&self, index: impl Into<u64>) -> Option<(AuthPath<Self>, Hash)> {
        let index = index.into();

        // Which way to go down the tree from this node
        let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);

        // Select the child we should be witnessing
        let (child, siblings) = which_way.pick(self.children());

        // Hash all the other siblings
        let siblings = siblings.map(|sibling| sibling.hash());

        // Witness the selected child
        let (child, leaf) = child.keep()?.witness(index)?;

        Some((path::Node { siblings, child }, leaf))
    }
}

impl<Child: GetHash + ForgetOwned + Clone> ForgetOwned for Node<Child> {
    #[inline]
    fn forget_owned(
        self,
        forgotten: Option<Forgotten>,
        index: impl Into<u64>,
    ) -> (Insert<Self>, bool) {
        let index = index.into();

        let [a, b, c, d]: [Insert<Child>; 4] = self.children.into();

        // Which child should we be forgetting?
        let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);

        // Recursively forget the appropriate child
        let (children, was_forgotten) = match which_way {
            WhichWay::Leftmost => {
                let (a, forgotten) = match a {
                    Insert::Keep(a) => a.forget_owned(forgotten, index),
                    Insert::Hash(_) => (a, false),
                };
                ([a, b, c, d], forgotten)
            }
            WhichWay::Left => {
                let (b, forgotten) = match b {
                    Insert::Keep(b) => b.forget_owned(forgotten, index),
                    Insert::Hash(_) => (b, false),
                };
                ([a, b, c, d], forgotten)
            }
            WhichWay::Right => {
                let (c, forgotten) = match c {
                    Insert::Keep(c) => c.forget_owned(forgotten, index),
                    Insert::Hash(_) => (c, false),
                };
                ([a, b, c, d], forgotten)
            }
            WhichWay::Rightmost => {
                let (d, forgotten) = match d {
                    Insert::Keep(d) => d.forget_owned(forgotten, index),
                    Insert::Hash(_) => (d, false),
                };
                ([a, b, c, d], forgotten)
            }
        };

        // Reconstruct the node from the children, or else (if all the children are hashes) hash
        // those hashes into a single node hash
        let reconstructed = match Children::try_from(children) {
            Ok(children) => {
                let mut reconstructed = Self {
                    children,
                    hash: self.hash,
                    forgotten: self.forgotten,
                };
                // If we forgot something, mark the location of the forgetting
                if was_forgotten {
                    if let Some(forgotten) = forgotten {
                        reconstructed.forgotten[which_way] = forgotten.next();
                    }
                }
                Insert::Keep(reconstructed)
            }
            Err(_) => Insert::Hash(self.hash),
        };

        (reconstructed, was_forgotten)
    }
}

impl<Child: Clone> GetPosition for Node<Child> {
    fn position(&self) -> Option<u64> {
        None
    }
}

impl<'tree, Child: Height + structure::Any<'tree> + Clone> structure::Any<'tree> for Node<Child> {
    fn kind(&self) -> Kind {
        Kind::Internal {
            height: <Self as Height>::Height::HEIGHT,
        }
    }

    fn forgotten(&self) -> Forgotten {
        self.forgotten.iter().copied().max().unwrap_or_default()
    }

    fn children(&'tree self) -> Vec<HashOrNode<'tree>> {
        self.forgotten
            .iter()
            .copied()
            .zip(self.children.children())
            .map(|(forgotten, child)| match child {
                Insert::Keep(node) => HashOrNode::Node(node),
                Insert::Hash(hash) => HashOrNode::Hash(HashedNode {
                    hash,
                    forgotten,
                    height: <Child as Height>::Height::HEIGHT,
                }),
            })
            .collect()
    }
}

impl<Child: Height + OutOfOrderOwned + Clone> OutOfOrderOwned for Node<Child> {
    fn uninitialized_out_of_order_insert_commitment_owned(
        this: Insert<Self>,
        index: u64,
        commitment: StateCommitment,
    ) -> Self {
        let (which_way, index) = WhichWay::at(<Self as Height>::Height::HEIGHT, index);

        let (hash, forgotten, mut children) = match this {
            // If there's an extant node, extract its contents
            Insert::Keep(Node {
                hash,
                forgotten,
                children,
            }) => (hash, forgotten, children.into()),
            // If there's no node here yet, grab the hash and make up the contents of a new node,
            // into which we will insert the commitment
            Insert::Hash(hash) => (hash, [Forgotten::default(); 4], {
                // Initially, all the children are the uninitialized hash; these will be filled in
                // over time, and then those that aren't filled in will be set to the appropriate
                // finalized hash
                let u = || Insert::Hash(Hash::uninitialized());
                [u(), u(), u(), u()]
            }),
        };

        // Temporarily swap in an uninitialized hash at the child, so we can directly
        // manipulate it as an owned object
        let child = std::mem::replace(
            &mut children[which_way],
            Insert::Hash(Hash::uninitialized()),
        );

        // Set that same child back to the result of inserting the commitment
        children[which_way] = Insert::Keep(
            Child::uninitialized_out_of_order_insert_commitment_owned(child, index, commitment),
        );

        // Convert the children back into a `Children`, which will always succeed
        // because we've guaranteed that we have at least one `Keep` child: the one we
        // just created
        let children = children.try_into().expect(
            "adding a commitment to extant children always allows them to be reconstituted",
        );

        Node {
            hash,
            forgotten,
            children,
        }
    }
}

impl<Child: GetHash + UncheckedSetHash + Clone> UncheckedSetHash for Node<Child> {
    fn unchecked_set_hash(&mut self, index: u64, height: u8, hash: Hash) {
        use std::cmp::Ordering::*;

        match height.cmp(&Self::Height::HEIGHT) {
            Greater => panic!("height too large when setting hash: {height}"),
            // Set the hash here
            Equal => self.hash = hash,
            // Set the hash below
            Less => {
                let (which_way, index) = WhichWay::at(Self::Height::HEIGHT, index);
                let (child, _) = which_way.pick(self.children.children_mut());
                match child {
                    InsertMut::Keep(child) => child.unchecked_set_hash(index, height, hash),
                    InsertMut::Hash(child_hash) => {
                        if <Child as Height>::Height::HEIGHT == height {
                            *child_hash = hash
                        }
                    }
                }
            }
        }
    }

    fn finish_initialize(&mut self) {
        // Finish all the children
        for child in self.children.children_mut() {
            match child {
                InsertMut::Keep(child) => child.finish_initialize(),
                InsertMut::Hash(hash) => {
                    if hash.is_uninitialized() {
                        // If the hash is not initialized, we set it to the empty finalized hash
                        *hash = Hash::one();
                    }
                }
            }
        }

        // IMPORTANT: we *must* finish the children before computing the hash at this node, or else
        // we will potentially be computing an invalid hash, since there might be invalid hashes in
        // the children which haven't been resolved yet!

        // Then, compute the hash at this node, if necessary
        if self.hash.is_uninitialized() {
            self.hash = self.children.hash();
        }
    }
}

#[cfg(test)]
mod test {
    #[test]
    fn check_node_size() {
        // Disabled due to spurious test failure.
        // static_assertions::assert_eq_size!(Node<()>, [u8; 72]);
    }
}