penumbra_sdk_tct/internal/hash.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
//! The core [`Hash`](struct@Hash) type, which is used internally to represent hashes, the
//! [`GetHash`] trait for computing and caching hashes of things, and the [`CachedHash`] type, which
//! is used internally for lazy evaluation of hashes.
use std::{
fmt::{self, Debug, Formatter},
ops::RangeInclusive,
};
use ark_ff::{One, Zero};
use once_cell::sync::Lazy;
use poseidon377::{hash_1, hash_4, Fq};
use serde::{Deserialize, Serialize};
use crate::prelude::*;
mod cache;
mod option;
pub use {cache::CachedHash, option::OptionHash};
/// A type which can be transformed into a [`struct@Hash`], either by retrieving a cached hash, computing a
/// hash for it, or some combination of both.
pub trait GetHash {
/// Get the hash of this item.
///
/// # Correctness
///
/// This function must return the same hash for the same item. It is permissible to use internal
/// mutability to cache hashes, but caching must ensure that the item cannot be mutated without
/// recalculating the hash.
fn hash(&self) -> Hash;
/// Get the hash of this item, only if the hash is already cached and does not require
/// recalculation.
///
/// # Correctness
///
/// It will not cause correctness issues to return a hash after recalculating it, but users of
/// this function expect it to be reliably fast, so it may cause unexpected performance issues
/// if this function performs any significant work.
fn cached_hash(&self) -> Option<Hash>;
/// If there is a hash cached, clear the cache.
///
/// By default, this does nothing. Override this if there is a cache.
fn clear_cached_hash(&self) {}
}
impl<T: GetHash> GetHash for &T {
#[inline]
fn hash(&self) -> Hash {
(**self).hash()
}
#[inline]
fn cached_hash(&self) -> Option<Hash> {
(**self).cached_hash()
}
}
impl<T: GetHash> GetHash for &mut T {
#[inline]
fn hash(&self) -> Hash {
(**self).hash()
}
#[inline]
fn cached_hash(&self) -> Option<Hash> {
(**self).cached_hash()
}
}
/// The hash of an individual [`Commitment`] or internal node in the tree.
#[derive(Clone, Copy, PartialEq, Eq, std::hash::Hash, Serialize, Deserialize)]
pub struct Hash(#[serde(with = "crate::storage::serialize::fq")] Fq);
impl From<Hash> for Fq {
#[inline]
fn from(hash: Hash) -> Self {
hash.0
}
}
impl Debug for Hash {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
if *self == Hash::zero() {
write!(f, "0")
} else if *self == Hash::one() {
write!(f, "1")
} else if *self == Hash::uninitialized() {
write!(f, "!")
} else {
write!(f, "{}", hex::encode(self.to_bytes()))
}
}
}
/// The domain separator used for leaves in the tree, and used as a base index for the domain
/// separators of nodes in the tree (nodes get a domain separator of the form `DOMAIN_SEPARATOR +
/// HEIGHT`).
pub static DOMAIN_SEPARATOR: Lazy<Fq> =
Lazy::new(|| Fq::from_le_bytes_mod_order(blake2b_simd::blake2b(b"penumbra.tct").as_bytes()));
#[allow(unused)]
impl Hash {
/// Create a hash from an arbitrary [`Fq`].
pub fn new(fq: Fq) -> Self {
Self(fq)
}
/// Get an array of bytes representing the hash
pub fn to_bytes(self) -> [u8; 32] {
self.0.to_bytes()
}
/// Decode a hash from bytes representing it
pub fn from_bytes(bytes: [u8; 32]) -> Result<Self, decaf377::EncodingError> {
Ok(Self(Fq::from_bytes_checked(&bytes)?))
}
/// The zero hash, used for padding of frontier nodes.
pub fn zero() -> Hash {
Self(Fq::zero())
}
/// Checks if the hash is zero.
pub fn is_zero(&self) -> bool {
self.0.is_zero()
}
/// The one hash, used for padding of complete nodes.
pub fn one() -> Hash {
Self(Fq::one())
}
/// Checks if the hash is one.
pub fn is_one(&self) -> bool {
self.0.is_one()
}
/// A stand-in hash that is out-of-range for `Fq`, to be used during intermediate construction
/// of the tree as a sentinel value for uninitialized nodes.
pub(crate) fn uninitialized() -> Hash {
Self(Fq::SENTINEL)
}
/// Checks if the hash is uninitialized.
pub(crate) fn is_uninitialized(&self) -> bool {
*self == Self::uninitialized()
}
/// Hash an individual commitment to be inserted into the tree.
#[inline]
pub fn of(item: StateCommitment) -> Hash {
Self(hash_1(&DOMAIN_SEPARATOR, item.0))
}
/// Construct a hash for an internal node of the tree, given its height and the hashes of its
/// four children.
#[inline]
pub fn node(height: u8, a: Hash, b: Hash, c: Hash, d: Hash) -> Hash {
// Definition of hash of node without cache optimization
fn hash_node(height: u8, a: Hash, b: Hash, c: Hash, d: Hash) -> Hash {
let height = Fq::from_le_bytes_mod_order(&height.to_le_bytes());
Hash(hash_4(&(*DOMAIN_SEPARATOR + height), (a.0, b.0, c.0, d.0)))
}
// The range of hashes to precompute: this captures hashes starting at the first internal node
// above the epoch leaf, and up to the epoch root. These are the only useful hashes to
// precompute, because commitments are expected to be cryptographically random, so
// precomputing internal hashes within blocks won't save work, and epochs are extremely
// unlikely to be entirely filled with empty blocks. However, in the middle, we can save
// work by remembering how to hash power-of-4-aligned sequences of empty blocks.
const PRECOMPUTE_HEIGHTS: RangeInclusive<u8> = 9..=16;
const TOTAL_PRECOMPUTED: usize =
*PRECOMPUTE_HEIGHTS.end() as usize - *PRECOMPUTE_HEIGHTS.start() as usize + 1;
// Precompute internal node hashes lying above sequences of empty blocks within epochs
static PRECOMPUTED_HASH_PAIRS: Lazy<[(Hash, Hash); TOTAL_PRECOMPUTED]> = Lazy::new(|| {
let mut hashes: Vec<(Hash, Hash)> = Vec::with_capacity(PRECOMPUTE_HEIGHTS.len());
for height in PRECOMPUTE_HEIGHTS {
let below = hashes.last().map(|below| below.1).unwrap_or_else(Hash::one);
hashes.push((below, hash_node(height, below, below, below, below)));
}
hashes
.try_into()
.expect("precomputed hashes should be the right length")
});
// If the height is in the range of the precomputed hashes, check if all the inputs are
// equal to the singular precomputed input for that height, and return the output if so
if PRECOMPUTE_HEIGHTS.contains(&height) {
let index = usize::from(height - PRECOMPUTE_HEIGHTS.start());
let (input, output) = PRECOMPUTED_HASH_PAIRS[index];
if [a, b, c, d] == [input, input, input, input] {
debug_assert_eq!(
output,
hash_node(height, a, b, c, d),
"precomputed hash mismatched calculated hash"
);
return output;
}
}
// Otherwise, hash the node normally
hash_node(height, a, b, c, d)
}
}
/// A version tracking when a particular piece of the tree was explicitly forgotten.
#[derive(
Derivative,
Clone,
Copy,
PartialEq,
Eq,
PartialOrd,
Ord,
std::hash::Hash,
Serialize,
Deserialize,
Default,
)]
#[cfg_attr(any(test, feature = "arbitrary"), derive(proptest_derive::Arbitrary))]
#[serde(from = "u64", into = "u64")]
pub struct Forgotten([u8; 6]);
impl Debug for Forgotten {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", u64::from(*self))
}
}
impl Forgotten {
/// Get the next forgotten-version after this one.
pub fn next(&self) -> Self {
Self::from(
u64::from(*self)
.checked_add(1)
.expect("forgotten should never overflow"),
)
}
}
impl From<Forgotten> for u64 {
fn from(forgotten: Forgotten) -> Self {
let mut eight_bytes = <[u8; 8]>::default();
for (in_byte, out_byte) in eight_bytes.iter_mut().zip(forgotten.0) {
*in_byte = out_byte;
}
u64::from_le_bytes(eight_bytes)
}
}
impl From<u64> for Forgotten {
fn from(u: u64) -> Self {
let bytes = u.to_le_bytes();
let mut six_bytes = [0; 6];
for (in_byte, out_byte) in six_bytes.iter_mut().zip(&bytes[..6]) {
*in_byte = *out_byte;
}
Self(six_bytes)
}
}
#[cfg(any(test, feature = "arbitrary"))]
mod arbitrary {
use poseidon377::Fq;
use super::Hash;
impl proptest::arbitrary::Arbitrary for Hash {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
HashStrategy
}
type Strategy = HashStrategy;
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Default)]
pub struct HashStrategy;
impl proptest::strategy::Strategy for HashStrategy {
type Tree = proptest::strategy::Just<Hash>;
type Value = Hash;
fn new_tree(
&self,
runner: &mut proptest::test_runner::TestRunner,
) -> proptest::strategy::NewTree<Self> {
use proptest::prelude::RngCore;
let rng = runner.rng();
let mut bytes = [0u8; 32];
rng.fill_bytes(&mut bytes);
Ok(proptest::strategy::Just(Hash(Fq::from_le_bytes_mod_order(
&bytes,
))))
}
}
}
#[cfg(test)]
mod test {
#[test]
fn forgotten_increments() {
use super::Forgotten;
let mut last = Forgotten::default();
for _ in 0..10 {
let next = last.next();
assert_eq!(u64::from(next), u64::from(last) + 1);
last = next;
}
}
}