penumbra_sdk_dex/swap/
plaintext.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use anyhow::{anyhow, Error, Result};

use ark_r1cs_std::prelude::*;
use ark_relations::r1cs::SynthesisError;
use decaf377::r1cs::FqVar;
use decaf377::Fq;
use once_cell::sync::Lazy;
use penumbra_sdk_fee::Fee;
use penumbra_sdk_proto::{
    core::keys::v1 as pb_keys, penumbra::core::component::dex::v1 as pb, DomainType,
};
use penumbra_sdk_tct::StateCommitment;
use poseidon377::{hash_1, hash_4, hash_7};
use rand_core::{CryptoRng, RngCore};

use decaf377_ka as ka;
use penumbra_sdk_asset::{asset, Value, ValueVar};
use penumbra_sdk_keys::{keys::OutgoingViewingKey, Address, AddressVar, PayloadKey};
use penumbra_sdk_num::{Amount, AmountVar};
use penumbra_sdk_shielded_pool::{Note, Rseed};
use penumbra_sdk_tct::r1cs::StateCommitmentVar;

use crate::{BatchSwapOutputData, TradingPair, TradingPairVar};

use super::{SwapCiphertext, SwapPayload, DOMAIN_SEPARATOR, SWAP_CIPHERTEXT_BYTES, SWAP_LEN_BYTES};

#[derive(Clone, Debug, PartialEq, Eq)]
pub struct SwapPlaintext {
    // Trading pair for the swap
    pub trading_pair: TradingPair,
    // Input amount of asset 1
    pub delta_1_i: Amount,
    // Input amount of asset 2
    pub delta_2_i: Amount,
    // Prepaid fee to claim the swap
    pub claim_fee: Fee,
    // Address to receive the SwapClaim outputs
    pub claim_address: Address,
    // Swap rseed
    pub rseed: Rseed,
}

pub static OUTPUT_1_BLINDING_DOMAIN_SEPARATOR: Lazy<Fq> = Lazy::new(|| {
    Fq::from_le_bytes_mod_order(
        blake2b_simd::blake2b(b"penumbra.swapclaim.output1.blinding").as_bytes(),
    )
});
pub static OUTPUT_2_BLINDING_DOMAIN_SEPARATOR: Lazy<Fq> = Lazy::new(|| {
    Fq::from_le_bytes_mod_order(
        blake2b_simd::blake2b(b"penumbra.swapclaim.output2.blinding").as_bytes(),
    )
});

impl SwapPlaintext {
    pub fn output_rseeds(&self) -> (Rseed, Rseed) {
        let fq_rseed = Fq::from_le_bytes_mod_order(&self.rseed.to_bytes()[..]);
        let rseed_1_hash = hash_1(&OUTPUT_1_BLINDING_DOMAIN_SEPARATOR, fq_rseed);
        let rseed_2_hash = hash_1(&OUTPUT_2_BLINDING_DOMAIN_SEPARATOR, fq_rseed);
        (
            Rseed(rseed_1_hash.to_bytes()),
            Rseed(rseed_2_hash.to_bytes()),
        )
    }

    pub fn output_notes(&self, batch_data: &BatchSwapOutputData) -> (Note, Note) {
        let (output_1_rseed, output_2_rseed) = self.output_rseeds();

        let (lambda_1_i, lambda_2_i) =
            batch_data.pro_rata_outputs((self.delta_1_i, self.delta_2_i));

        let output_1_note = Note::from_parts(
            self.claim_address.clone(),
            Value {
                amount: lambda_1_i,
                asset_id: self.trading_pair.asset_1(),
            },
            output_1_rseed,
        )
        .expect("claim address is valid");

        let output_2_note = Note::from_parts(
            self.claim_address.clone(),
            Value {
                amount: lambda_2_i,
                asset_id: self.trading_pair.asset_2(),
            },
            output_2_rseed,
        )
        .expect("claim address is valid");

        (output_1_note, output_2_note)
    }

    // Constructs the unique asset ID for a swap as a poseidon hash of the input data for the swap.
    //
    // https://protocol.penumbra.zone/main/zswap/swap.html#swap-actions
    pub fn swap_commitment(&self) -> StateCommitment {
        let inner = hash_7(
            &DOMAIN_SEPARATOR,
            (
                Fq::from_le_bytes_mod_order(&self.rseed.to_bytes()[..]),
                self.claim_fee.0.amount.into(),
                self.claim_fee.0.asset_id.0,
                self.claim_address
                    .diversified_generator()
                    .vartime_compress_to_field(),
                *self.claim_address.transmission_key_s(),
                Fq::from_le_bytes_mod_order(&self.claim_address.clue_key().0[..]),
                hash_4(
                    &DOMAIN_SEPARATOR,
                    (
                        self.trading_pair.asset_1().0,
                        self.trading_pair.asset_2().0,
                        self.delta_1_i.into(),
                        self.delta_2_i.into(),
                    ),
                ),
            ),
        );

        StateCommitment(inner)
    }

    pub fn diversified_generator(&self) -> &decaf377::Element {
        self.claim_address.diversified_generator()
    }

    pub fn transmission_key(&self) -> &ka::Public {
        self.claim_address.transmission_key()
    }

    pub fn encrypt(&self, ovk: &OutgoingViewingKey) -> SwapPayload {
        let commitment = self.swap_commitment();
        let key = PayloadKey::derive_swap(ovk, commitment);
        let swap_plaintext: [u8; SWAP_LEN_BYTES] = self.into();
        let encryption_result = key.encrypt_swap(swap_plaintext.to_vec());

        let ciphertext: [u8; SWAP_CIPHERTEXT_BYTES] = encryption_result
            .try_into()
            .expect("swap encryption result fits in ciphertext len");

        SwapPayload {
            encrypted_swap: SwapCiphertext(ciphertext),
            commitment,
        }
    }

    pub fn delta_1_value(&self) -> Value {
        Value {
            amount: self.delta_1_i,
            asset_id: self.trading_pair.asset_1,
        }
    }

    pub fn delta_2_value(&self) -> Value {
        Value {
            amount: self.delta_2_i,
            asset_id: self.trading_pair.asset_2,
        }
    }

    pub fn new<R: RngCore + CryptoRng>(
        rng: &mut R,
        trading_pair: TradingPair,
        delta_1_i: Amount,
        delta_2_i: Amount,
        claim_fee: Fee,
        claim_address: Address,
    ) -> SwapPlaintext {
        let rseed = Rseed::generate(rng);

        Self {
            trading_pair,
            delta_1_i,
            delta_2_i,
            claim_fee,
            claim_address,
            rseed,
        }
    }
}

pub struct SwapPlaintextVar {
    pub claim_fee: ValueVar,
    pub delta_1_i: AmountVar,
    pub trading_pair: TradingPairVar,
    pub delta_2_i: AmountVar,
    pub claim_address: AddressVar,
    pub rseed: FqVar,
}

impl SwapPlaintextVar {
    pub fn delta_1_value(&self) -> ValueVar {
        ValueVar {
            amount: self.delta_1_i.clone(),
            asset_id: self.trading_pair.asset_1.clone(),
        }
    }

    pub fn delta_2_value(&self) -> ValueVar {
        ValueVar {
            amount: self.delta_2_i.clone(),
            asset_id: self.trading_pair.asset_2.clone(),
        }
    }

    pub fn commit(&self) -> Result<StateCommitmentVar, SynthesisError> {
        // Access constraint system.
        let cs = self.delta_1_i.amount.cs();

        let domain_sep = FqVar::new_constant(cs.clone(), *DOMAIN_SEPARATOR)?;
        let compressed_g_d = self
            .claim_address
            .diversified_generator()
            .compress_to_field()?;

        let inner_hash4 = poseidon377::r1cs::hash_4(
            cs.clone(),
            &domain_sep,
            (
                self.trading_pair.asset_1.asset_id.clone(),
                self.trading_pair.asset_2.asset_id.clone(),
                self.delta_1_i.amount.clone(),
                self.delta_2_i.amount.clone(),
            ),
        )?;

        let inner = poseidon377::r1cs::hash_7(
            cs,
            &domain_sep,
            (
                self.rseed.clone(),
                self.claim_fee.amount.amount.clone(),
                self.claim_fee.asset_id.asset_id.clone(),
                compressed_g_d,
                self.claim_address.transmission_key().compress_to_field()?,
                self.claim_address.clue_key(),
                inner_hash4,
            ),
        )?;

        Ok(StateCommitmentVar { inner })
    }
}

impl AllocVar<SwapPlaintext, Fq> for SwapPlaintextVar {
    fn new_variable<T: std::borrow::Borrow<SwapPlaintext>>(
        cs: impl Into<ark_relations::r1cs::Namespace<Fq>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: ark_r1cs_std::prelude::AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        let swap_plaintext = f()?.borrow().clone();
        let claim_fee =
            ValueVar::new_variable(cs.clone(), || Ok(swap_plaintext.claim_fee.0), mode)?;
        let delta_1_i = AmountVar::new_variable(cs.clone(), || Ok(swap_plaintext.delta_1_i), mode)?;

        // Note: We currently use `TradingPairVar::new_variable_unchecked` as the only
        // place we use the trading pair is when computing the swap commitment. A malicious
        // prover is unable to switch the direction of the canonical trading pair as the
        // swap commitment integrity check would be invalid.
        let trading_pair = TradingPairVar::new_variable_unchecked(
            cs.clone(),
            || Ok(swap_plaintext.trading_pair),
            mode,
        )?;
        let delta_2_i = AmountVar::new_variable(cs.clone(), || Ok(swap_plaintext.delta_2_i), mode)?;
        let claim_address =
            AddressVar::new_variable(cs.clone(), || Ok(swap_plaintext.claim_address), mode)?;
        let rseed = FqVar::new_variable(
            cs,
            || {
                Ok(Fq::from_le_bytes_mod_order(
                    &swap_plaintext.rseed.to_bytes()[..],
                ))
            },
            mode,
        )?;
        Ok(Self {
            claim_fee,
            delta_1_i,
            trading_pair,
            delta_2_i,
            claim_address,
            rseed,
        })
    }
}

impl DomainType for SwapPlaintext {
    type Proto = pb::SwapPlaintext;
}

impl TryFrom<pb::SwapPlaintext> for SwapPlaintext {
    type Error = anyhow::Error;
    fn try_from(plaintext: pb::SwapPlaintext) -> anyhow::Result<Self> {
        Ok(Self {
            delta_1_i: plaintext
                .delta_1_i
                .ok_or_else(|| anyhow!("missing delta_1_i"))?
                .try_into()?,
            delta_2_i: plaintext
                .delta_2_i
                .ok_or_else(|| anyhow!("missing delta_2_i"))?
                .try_into()?,
            claim_address: plaintext
                .claim_address
                .ok_or_else(|| anyhow::anyhow!("missing SwapPlaintext claim address"))?
                .try_into()
                .map_err(|_| anyhow::anyhow!("invalid claim address in SwapPlaintext"))?,
            claim_fee: plaintext
                .claim_fee
                .ok_or_else(|| anyhow::anyhow!("missing SwapPlaintext claim_fee"))?
                .try_into()?,
            trading_pair: plaintext
                .trading_pair
                .ok_or_else(|| anyhow::anyhow!("missing trading pair in SwapPlaintext"))?
                .try_into()?,
            rseed: Rseed(plaintext.rseed.as_slice().try_into()?),
        })
    }
}

impl From<SwapPlaintext> for pb::SwapPlaintext {
    fn from(plaintext: SwapPlaintext) -> Self {
        Self {
            delta_1_i: Some(plaintext.delta_1_i.into()),
            delta_2_i: Some(plaintext.delta_2_i.into()),
            claim_fee: Some(plaintext.claim_fee.into()),
            claim_address: Some(plaintext.claim_address.into()),
            trading_pair: Some(plaintext.trading_pair.into()),
            rseed: plaintext.rseed.to_bytes().to_vec(),
        }
    }
}

impl From<&SwapPlaintext> for [u8; SWAP_LEN_BYTES] {
    fn from(swap: &SwapPlaintext) -> [u8; SWAP_LEN_BYTES] {
        let mut bytes = [0u8; SWAP_LEN_BYTES];
        bytes[0..64].copy_from_slice(&swap.trading_pair.to_bytes());
        bytes[64..80].copy_from_slice(&swap.delta_1_i.to_le_bytes());
        bytes[80..96].copy_from_slice(&swap.delta_2_i.to_le_bytes());
        bytes[96..112].copy_from_slice(&swap.claim_fee.0.amount.to_le_bytes());
        bytes[112..144].copy_from_slice(&swap.claim_fee.0.asset_id.to_bytes());
        let pb_address = pb_keys::Address::from(swap.claim_address.clone());
        bytes[144..224].copy_from_slice(&pb_address.inner);
        bytes[224..256].copy_from_slice(&swap.rseed.to_bytes());
        bytes
    }
}

impl From<SwapPlaintext> for [u8; SWAP_LEN_BYTES] {
    fn from(swap: SwapPlaintext) -> [u8; SWAP_LEN_BYTES] {
        (&swap).into()
    }
}

impl TryFrom<&[u8]> for SwapPlaintext {
    type Error = Error;

    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        if bytes.len() != SWAP_LEN_BYTES {
            anyhow::bail!("incorrect length for serialized swap plaintext");
        }

        let tp_bytes: [u8; 64] = bytes[0..64]
            .try_into()
            .map_err(|_| anyhow!("error fetching trading pair bytes"))?;
        let delta_1_bytes: [u8; 16] = bytes[64..80]
            .try_into()
            .map_err(|_| anyhow!("error fetching delta1 bytes"))?;
        let delta_2_bytes: [u8; 16] = bytes[80..96]
            .try_into()
            .map_err(|_| anyhow!("error fetching delta2 bytes"))?;
        let fee_amount_bytes: [u8; 16] = bytes[96..112]
            .try_into()
            .map_err(|_| anyhow!("error fetching fee amount bytes"))?;
        let fee_asset_id_bytes: [u8; 32] = bytes[112..144]
            .try_into()
            .map_err(|_| anyhow!("error fetching fee asset ID bytes"))?;
        let address_bytes: [u8; 80] = bytes[144..224]
            .try_into()
            .map_err(|_| anyhow!("error fetching address bytes"))?;
        let pb_address = pb_keys::Address {
            inner: address_bytes.to_vec(),
            alt_bech32m: String::new(),
        };
        let rseed: [u8; 32] = bytes[224..256]
            .try_into()
            .map_err(|_| anyhow!("error fetching rseed bytes"))?;

        Ok(SwapPlaintext {
            trading_pair: tp_bytes
                .try_into()
                .map_err(|_| anyhow!("error deserializing trading pair"))?,
            delta_1_i: Amount::from_le_bytes(delta_1_bytes),
            delta_2_i: Amount::from_le_bytes(delta_2_bytes),
            claim_fee: Fee(Value {
                amount: Amount::from_le_bytes(fee_amount_bytes),
                asset_id: asset::Id::try_from(fee_asset_id_bytes)?,
            }),
            claim_address: pb_address.try_into()?,
            rseed: Rseed(rseed),
        })
    }
}

impl TryFrom<[u8; SWAP_LEN_BYTES]> for SwapPlaintext {
    type Error = Error;

    fn try_from(bytes: [u8; SWAP_LEN_BYTES]) -> Result<SwapPlaintext, Self::Error> {
        (&bytes[..]).try_into()
    }
}

#[cfg(test)]
mod tests {

    use rand_core::OsRng;

    use super::*;
    use penumbra_sdk_asset::{asset, Value};
    use penumbra_sdk_keys::keys::{Bip44Path, SeedPhrase, SpendKey};

    #[test]
    /// Check the swap plaintext can be encrypted and decrypted with the OVK.
    fn swap_encryption_and_decryption() {
        let mut rng = OsRng;

        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let ovk = fvk.outgoing();
        let (dest, _dtk_d) = ivk.payment_address(0u32.into());
        let trading_pair = TradingPair::new(
            asset::Cache::with_known_assets()
                .get_unit("upenumbra")
                .unwrap()
                .id(),
            asset::Cache::with_known_assets()
                .get_unit("nala")
                .unwrap()
                .id(),
        );

        let swap = SwapPlaintext::new(
            &mut rng,
            trading_pair,
            100000u64.into(),
            1u64.into(),
            Fee(Value {
                amount: 3u64.into(),
                asset_id: asset::Cache::with_known_assets()
                    .get_unit("upenumbra")
                    .unwrap()
                    .id(),
            }),
            dest,
        );

        let ciphertext = swap.encrypt(ovk).encrypted_swap;
        let plaintext = SwapCiphertext::decrypt(&ciphertext, ovk, swap.swap_commitment())
            .expect("can decrypt swap");

        assert_eq!(plaintext, swap);
    }
}