penumbra_sdk_dex/
batch_swap_output_data.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
use anyhow::{anyhow, Result};

use ark_ff::ToConstraintField;
use ark_r1cs_std::{
    prelude::{AllocVar, EqGadget},
    select::CondSelectGadget,
};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use decaf377::{r1cs::FqVar, Fq};
use penumbra_sdk_proto::{penumbra::core::component::dex::v1 as pb, DomainType};
use penumbra_sdk_tct::Position;
use serde::{Deserialize, Serialize};

use penumbra_sdk_num::fixpoint::{bit_constrain, U128x128, U128x128Var};
use penumbra_sdk_num::{Amount, AmountVar};

use crate::TradingPairVar;

use super::TradingPair;

#[derive(Clone, Debug, Copy, PartialEq, Eq, Serialize, Deserialize)]
#[serde(try_from = "pb::BatchSwapOutputData", into = "pb::BatchSwapOutputData")]
pub struct BatchSwapOutputData {
    /// The total amount of asset 1 that was input to the batch swap.
    pub delta_1: Amount,
    /// The total amount of asset 2 that was input to the batch swap.
    pub delta_2: Amount,
    /// The total amount of asset 1 that was output from the batch swap for 2=>1 trades.
    pub lambda_1: Amount,
    /// The total amount of asset 2 that was output from the batch swap for 1=>2 trades.
    pub lambda_2: Amount,
    /// The amount of asset 1 that was returned unfilled from the batch swap for 1=>2 trades.
    pub unfilled_1: Amount,
    /// The amount of asset 2 that was returned unfilled from the batch swap for 2=>1 trades.
    pub unfilled_2: Amount,
    /// The height for which the batch swap data is valid.
    pub height: u64,
    /// The trading pair associated with the batch swap.
    pub trading_pair: TradingPair,
    /// The position prefix where this batch swap occurred. The commitment index must be 0.
    pub sct_position_prefix: Position,
}

impl BatchSwapOutputData {
    /// Given a user's inputs `(delta_1_i, delta_2_i)`, compute their pro rata share
    /// of the batch output `(lambda_1_i, lambda_2_i)`.
    pub fn pro_rata_outputs(&self, (delta_1_i, delta_2_i): (Amount, Amount)) -> (Amount, Amount) {
        // The pro rata fraction is delta_j_i / delta_j, which we can multiply through:
        //   lambda_2_i = (delta_1_i / delta_1) * lambda_2   + (delta_2_i / delta_2) * unfilled_2
        //   lambda_1_i = (delta_1_i / delta_1) * unfilled_1 + (delta_2_i / delta_2) * lambda_1

        let delta_1_i = U128x128::from(delta_1_i);
        let delta_2_i = U128x128::from(delta_2_i);
        let delta_1 = U128x128::from(self.delta_1);
        let delta_2 = U128x128::from(self.delta_2);
        let lambda_1 = U128x128::from(self.lambda_1);
        let lambda_2 = U128x128::from(self.lambda_2);
        let unfilled_1 = U128x128::from(self.unfilled_1);
        let unfilled_2 = U128x128::from(self.unfilled_2);

        // Compute the user i's share of the batch inputs of assets 1 and 2.
        // The .unwrap_or_default ensures that when the batch input delta_1 is zero, all pro-rata shares of it are also zero.
        let pro_rata_input_1 = (delta_1_i / delta_1).unwrap_or_default();
        let pro_rata_input_2 = (delta_2_i / delta_2).unwrap_or_default();

        let lambda_2_i = (pro_rata_input_1 * lambda_2).unwrap_or_default()
            + (pro_rata_input_2 * unfilled_2).unwrap_or_default();
        let lambda_1_i = (pro_rata_input_1 * unfilled_1).unwrap_or_default()
            + (pro_rata_input_2 * lambda_1).unwrap_or_default();

        (
            lambda_1_i
                .unwrap_or_default()
                .round_down()
                .try_into()
                .expect("rounded amount is integral"),
            lambda_2_i
                .unwrap_or_default()
                .round_down()
                .try_into()
                .expect("rounded amount is integral"),
        )
    }
}

impl ToConstraintField<Fq> for BatchSwapOutputData {
    fn to_field_elements(&self) -> Option<Vec<Fq>> {
        let mut public_inputs = Vec::new();
        let delta_1 = U128x128::from(self.delta_1);
        public_inputs.extend(
            delta_1
                .to_field_elements()
                .expect("delta_1 is a Bls12-377 field member"),
        );
        public_inputs.extend(
            U128x128::from(self.delta_2)
                .to_field_elements()
                .expect("U128x128 types are Bls12-377 field members"),
        );
        public_inputs.extend(
            U128x128::from(self.lambda_1)
                .to_field_elements()
                .expect("U128x128 types are Bls12-377 field members"),
        );
        public_inputs.extend(
            U128x128::from(self.lambda_2)
                .to_field_elements()
                .expect("U128x128 types are Bls12-377 field members"),
        );
        public_inputs.extend(
            U128x128::from(self.unfilled_1)
                .to_field_elements()
                .expect("U128x128 types are Bls12-377 field members"),
        );
        public_inputs.extend(
            U128x128::from(self.unfilled_2)
                .to_field_elements()
                .expect("U128x128 types are Bls12-377 field members"),
        );
        public_inputs.extend(
            self.trading_pair
                .to_field_elements()
                .expect("trading_pair is a Bls12-377 field member"),
        );
        public_inputs.extend(
            Fq::from(self.sct_position_prefix.epoch())
                .to_field_elements()
                .expect("Position types are Bls12-377 field members"),
        );
        public_inputs.extend(
            Fq::from(self.sct_position_prefix.block())
                .to_field_elements()
                .expect("Position types are Bls12-377 field members"),
        );
        Some(public_inputs)
    }
}

pub struct BatchSwapOutputDataVar {
    pub delta_1: U128x128Var,
    pub delta_2: U128x128Var,
    pub lambda_1: U128x128Var,
    pub lambda_2: U128x128Var,
    pub unfilled_1: U128x128Var,
    pub unfilled_2: U128x128Var,
    pub trading_pair: TradingPairVar,
    pub epoch: FqVar,
    pub block_within_epoch: FqVar,
}

impl AllocVar<BatchSwapOutputData, Fq> for BatchSwapOutputDataVar {
    fn new_variable<T: std::borrow::Borrow<BatchSwapOutputData>>(
        cs: impl Into<ark_relations::r1cs::Namespace<Fq>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: ark_r1cs_std::prelude::AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        let output_data = *(f()?.borrow());
        let delta_1_fixpoint: U128x128 = output_data.delta_1.into();
        let delta_1 = U128x128Var::new_variable(cs.clone(), || Ok(delta_1_fixpoint), mode)?;
        let delta_2_fixpoint: U128x128 = output_data.delta_2.into();
        let delta_2 = U128x128Var::new_variable(cs.clone(), || Ok(delta_2_fixpoint), mode)?;
        let lambda_1_fixpoint: U128x128 = output_data.lambda_1.into();
        let lambda_1 = U128x128Var::new_variable(cs.clone(), || Ok(lambda_1_fixpoint), mode)?;
        let lambda_2_fixpoint: U128x128 = output_data.lambda_2.into();
        let lambda_2 = U128x128Var::new_variable(cs.clone(), || Ok(lambda_2_fixpoint), mode)?;
        let unfilled_1_fixpoint: U128x128 = output_data.unfilled_1.into();
        let unfilled_1 = U128x128Var::new_variable(cs.clone(), || Ok(unfilled_1_fixpoint), mode)?;
        let unfilled_2_fixpoint: U128x128 = output_data.unfilled_2.into();
        let unfilled_2 = U128x128Var::new_variable(cs.clone(), || Ok(unfilled_2_fixpoint), mode)?;
        let trading_pair = TradingPairVar::new_variable_unchecked(
            cs.clone(),
            || Ok(output_data.trading_pair),
            mode,
        )?;
        let epoch = FqVar::new_variable(
            cs.clone(),
            || Ok(Fq::from(output_data.sct_position_prefix.epoch())),
            mode,
        )?;
        bit_constrain(epoch.clone(), 16)?;
        let block_within_epoch = FqVar::new_variable(
            cs.clone(),
            || Ok(Fq::from(output_data.sct_position_prefix.block())),
            mode,
        )?;
        bit_constrain(block_within_epoch.clone(), 16)?;

        Ok(Self {
            delta_1,
            delta_2,
            lambda_1,
            lambda_2,
            unfilled_1,
            unfilled_2,
            trading_pair,
            epoch,
            block_within_epoch,
        })
    }
}

impl DomainType for BatchSwapOutputData {
    type Proto = pb::BatchSwapOutputData;
}

impl From<BatchSwapOutputData> for pb::BatchSwapOutputData {
    fn from(s: BatchSwapOutputData) -> Self {
        #[allow(deprecated)]
        pb::BatchSwapOutputData {
            delta_1: Some(s.delta_1.into()),
            delta_2: Some(s.delta_2.into()),
            lambda_1: Some(s.lambda_1.into()),
            lambda_2: Some(s.lambda_2.into()),
            unfilled_1: Some(s.unfilled_1.into()),
            unfilled_2: Some(s.unfilled_2.into()),
            height: s.height,
            trading_pair: Some(s.trading_pair.into()),
            sct_position_prefix: s.sct_position_prefix.into(),
            // Deprecated fields we explicitly fill with defaults.
            // We could instead use a `..Default::default()` here, but that would silently
            // work if we were to add fields to the domain type.
            epoch_starting_height: Default::default(),
        }
    }
}

impl BatchSwapOutputDataVar {
    pub fn pro_rata_outputs(
        &self,
        delta_1_i: AmountVar,
        delta_2_i: AmountVar,
        cs: ConstraintSystemRef<Fq>,
    ) -> Result<(AmountVar, AmountVar), SynthesisError> {
        // The pro rata fraction is delta_j_i / delta_j, which we can multiply through:
        //   lambda_2_i = (delta_1_i / delta_1) * lambda_2   + (delta_2_i / delta_2) * unfilled_2
        //   lambda_1_i = (delta_1_i / delta_1) * unfilled_1 + (delta_2_i / delta_2) * lambda_1

        let delta_1_i = U128x128Var::from_amount_var(delta_1_i)?;
        let delta_2_i = U128x128Var::from_amount_var(delta_2_i)?;

        let zero = U128x128Var::zero();
        let one = U128x128Var::new_constant(cs.clone(), U128x128::from(1u64))?;

        // Compute the user i's share of the batch inputs of assets 1 and 2.
        // When the batch input delta_1 is zero, all pro-rata shares of it are also zero.
        let delta_1_is_zero = self.delta_1.is_eq(&zero)?;
        let divisor_1 = U128x128Var::conditionally_select(&delta_1_is_zero, &one, &self.delta_1)?;
        let division_result_1 = delta_1_i.checked_div(&divisor_1, cs.clone())?;
        let pro_rata_input_1 =
            U128x128Var::conditionally_select(&delta_1_is_zero, &zero, &division_result_1)?;

        let delta_2_is_zero = self.delta_2.is_eq(&zero)?;
        let divisor_2 = U128x128Var::conditionally_select(&delta_2_is_zero, &one, &self.delta_2)?;
        let division_result_2 = delta_2_i.checked_div(&divisor_2, cs)?;
        let pro_rata_input_2 =
            U128x128Var::conditionally_select(&delta_2_is_zero, &zero, &division_result_2)?;

        // let lambda_2_i = (pro_rata_input_1 * lambda_2).unwrap_or_default()
        //     + (pro_rata_input_2 * unfilled_2).unwrap_or_default();
        let addition_term2_1 = pro_rata_input_1.clone().checked_mul(&self.lambda_2)?;
        let addition_term2_2 = pro_rata_input_2.clone().checked_mul(&self.unfilled_2)?;
        let lambda_2_i = addition_term2_1.checked_add(&addition_term2_2)?;

        // let lambda_1_i = (pro_rata_input_1 * unfilled_1).unwrap_or_default()
        //     + (pro_rata_input_2 * lambda_1).unwrap_or_default();
        let addition_term1_1 = pro_rata_input_1.checked_mul(&self.unfilled_1)?;
        let addition_term1_2 = pro_rata_input_2.checked_mul(&self.lambda_1)?;
        let lambda_1_i = addition_term1_1.checked_add(&addition_term1_2)?;

        let lambda_1_i_rounded = lambda_1_i.round_down();
        let lambda_2_i_rounded = lambda_2_i.round_down();

        Ok((lambda_1_i_rounded.into(), lambda_2_i_rounded.into()))
    }
}

impl From<BatchSwapOutputData> for pb::BatchSwapOutputDataResponse {
    fn from(s: BatchSwapOutputData) -> Self {
        pb::BatchSwapOutputDataResponse {
            data: Some(s.into()),
        }
    }
}

impl TryFrom<pb::BatchSwapOutputData> for BatchSwapOutputData {
    type Error = anyhow::Error;
    fn try_from(s: pb::BatchSwapOutputData) -> Result<Self, Self::Error> {
        let sct_position_prefix = {
            let prefix = Position::from(s.sct_position_prefix);
            anyhow::ensure!(
                prefix.commitment() == 0,
                "sct_position_prefix.commitment() != 0"
            );
            prefix
        };
        Ok(Self {
            delta_1: s
                .delta_1
                .ok_or_else(|| anyhow!("Missing delta_1"))?
                .try_into()?,
            delta_2: s
                .delta_2
                .ok_or_else(|| anyhow!("Missing delta_2"))?
                .try_into()?,
            lambda_1: s
                .lambda_1
                .ok_or_else(|| anyhow!("Missing lambda_1"))?
                .try_into()?,
            lambda_2: s
                .lambda_2
                .ok_or_else(|| anyhow!("Missing lambda_2"))?
                .try_into()?,
            unfilled_1: s
                .unfilled_1
                .ok_or_else(|| anyhow!("Missing unfilled_1"))?
                .try_into()?,
            unfilled_2: s
                .unfilled_2
                .ok_or_else(|| anyhow!("Missing unfilled_2"))?
                .try_into()?,
            height: s.height,
            trading_pair: s
                .trading_pair
                .ok_or_else(|| anyhow!("Missing trading_pair"))?
                .try_into()?,
            sct_position_prefix,
        })
    }
}

impl TryFrom<pb::BatchSwapOutputDataResponse> for BatchSwapOutputData {
    type Error = anyhow::Error;
    fn try_from(value: pb::BatchSwapOutputDataResponse) -> Result<Self, Self::Error> {
        value
            .data
            .ok_or_else(|| anyhow::anyhow!("empty BatchSwapOutputDataResponse message"))?
            .try_into()
    }
}

#[cfg(test)]
mod tests {
    use ark_groth16::{r1cs_to_qap::LibsnarkReduction, Groth16};
    use ark_relations::r1cs::ConstraintSynthesizer;
    use ark_snark::SNARK;
    use decaf377::Bls12_377;
    use penumbra_sdk_asset::asset;
    use penumbra_sdk_proof_params::{generate_test_parameters, DummyWitness};
    use rand_core::OsRng;

    use super::*;

    #[test]
    fn pasiphae_inflation_bug() {
        let bsod: BatchSwapOutputData = serde_json::from_str(
            r#"
{
    "delta1": {
        "lo": "31730032"
    },
    "delta2": {},
    "unfilled1": {},
    "lambda2": {
        "lo": "28766268"
    },
    "lambda1": {},
    "unfilled2": {},
    "height": "2185",
    "tradingPair": {
        "asset1": {
        "inner": "HW2Eq3UZVSBttoUwUi/MUtE7rr2UU7/UH500byp7OAc="
        },
        "asset2": {
        "inner": "KeqcLzNx9qSH5+lcJHBB9KNW+YPrBk5dKzvPMiypahA="
        }
    }
}"#,
        )
        .unwrap();

        let (delta_1_i, delta_2_i) = (Amount::from(31730032u64), Amount::from(0u64));

        let (lambda_1_i, lambda_2_i) = bsod.pro_rata_outputs((delta_1_i, delta_2_i));

        assert_eq!(lambda_1_i, Amount::from(0u64));
        assert_eq!(lambda_2_i, Amount::from(28766268u64));
    }

    struct ProRataOutputCircuit {
        delta_1_i: Amount,
        delta_2_i: Amount,
        lambda_1_i: Amount,
        lambda_2_i: Amount,
        pub bsod: BatchSwapOutputData,
    }

    impl ConstraintSynthesizer<Fq> for ProRataOutputCircuit {
        fn generate_constraints(
            self,
            cs: ConstraintSystemRef<Fq>,
        ) -> ark_relations::r1cs::Result<()> {
            let delta_1_i_var = AmountVar::new_witness(cs.clone(), || Ok(self.delta_1_i))?;
            let delta_2_i_var = AmountVar::new_witness(cs.clone(), || Ok(self.delta_2_i))?;
            let lambda_1_i_var = AmountVar::new_witness(cs.clone(), || Ok(self.lambda_1_i))?;
            let lambda_2_i_var = AmountVar::new_witness(cs.clone(), || Ok(self.lambda_2_i))?;
            let bsod_var = BatchSwapOutputDataVar::new_input(cs.clone(), || Ok(self.bsod))?;

            let (calculated_lambda_1_i_var, calculated_lambda_2_i_var) =
                bsod_var.pro_rata_outputs(delta_1_i_var, delta_2_i_var, cs.clone())?;
            calculated_lambda_1_i_var.enforce_equal(&lambda_1_i_var)?;
            calculated_lambda_2_i_var.enforce_equal(&lambda_2_i_var)?;

            Ok(())
        }
    }

    impl DummyWitness for ProRataOutputCircuit {
        fn with_dummy_witness() -> Self {
            let trading_pair = TradingPair {
                asset_1: asset::Cache::with_known_assets()
                    .get_unit("upenumbra")
                    .expect("upenumbra denom should always be known by the asset registry")
                    .id(),
                asset_2: asset::Cache::with_known_assets()
                    .get_unit("nala")
                    .expect("nala denom should always be known by the asset registry")
                    .id(),
            };
            Self {
                delta_1_i: Amount::from(1u32),
                delta_2_i: Amount::from(1u32),
                lambda_1_i: Amount::from(1u32),
                lambda_2_i: Amount::from(1u32),
                bsod: BatchSwapOutputData {
                    delta_1: Amount::from(1u32),
                    delta_2: Amount::from(1u32),
                    lambda_1: Amount::from(1u32),
                    lambda_2: Amount::from(1u32),
                    unfilled_1: Amount::from(1u32),
                    unfilled_2: Amount::from(1u32),
                    height: 0,
                    trading_pair,
                    sct_position_prefix: 0u64.into(),
                },
            }
        }
    }

    #[test]
    fn happy_path_bsod_pro_rata() {
        // Example Chain-wide swap output data
        let gm = asset::Cache::with_known_assets().get_unit("gm").unwrap();
        let gn = asset::Cache::with_known_assets().get_unit("gn").unwrap();
        let trading_pair = TradingPair::new(gm.id(), gn.id());
        let bsod = BatchSwapOutputData {
            delta_1: Amount::from(200u64),
            delta_2: Amount::from(300u64),
            lambda_1: Amount::from(150u64),
            lambda_2: Amount::from(125u64),
            unfilled_1: Amount::from(23u64),
            unfilled_2: Amount::from(50u64),
            height: 0u64,
            trading_pair,
            sct_position_prefix: 0u64.into(),
        };

        // Now suppose our user's contribution is:
        let delta_1_i = Amount::from(100u64);
        let delta_2_i = Amount::from(200u64);

        // Then their pro-rata outputs (out-of-circuit) are:
        let (lambda_1_i, lambda_2_i) = bsod.pro_rata_outputs((delta_1_i, delta_2_i));

        let circuit = ProRataOutputCircuit {
            delta_1_i,
            delta_2_i,
            lambda_1_i,
            lambda_2_i,
            bsod,
        };

        let mut rng = OsRng;
        let (pk, vk) = generate_test_parameters::<ProRataOutputCircuit>(&mut rng);

        let proof = Groth16::<Bls12_377, LibsnarkReduction>::prove(&pk, circuit, &mut rng)
            .expect("should be able to form proof");

        let proof_result = Groth16::<Bls12_377, LibsnarkReduction>::verify(
            &vk,
            &bsod.to_field_elements().unwrap(),
            &proof,
        )
        .expect("should be able to verify proof");

        assert!(proof_result);
    }
}