penumbra_sdk_app/action_handler/transaction.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use std::sync::Arc;
use anyhow::Result;
use async_trait::async_trait;
use cnidarium::{StateRead, StateWrite};
use penumbra_sdk_fee::component::FeePay as _;
use penumbra_sdk_sct::{component::source::SourceContext, CommitmentSource};
use penumbra_sdk_shielded_pool::component::ClueManager;
use penumbra_sdk_transaction::{gas::GasCost as _, Transaction};
use tokio::task::JoinSet;
use tracing::{instrument, Instrument};
use super::AppActionHandler;
mod stateful;
mod stateless;
use self::stateful::{
claimed_anchor_is_valid, fmd_parameters_valid, tx_parameters_historical_check,
};
use stateless::{
check_memo_exists_if_outputs_absent_if_not, check_non_empty_transaction,
num_clues_equal_to_num_outputs, valid_binding_signature,
};
#[async_trait]
impl AppActionHandler for Transaction {
type CheckStatelessContext = ();
// We only instrument the top-level `check_stateless`, so we get one span for each transaction.
#[instrument(skip(self, _context))]
async fn check_stateless(&self, _context: ()) -> Result<()> {
// This check should be done first, and complete before all other
// stateless checks, like proof verification. In addition to proving
// that value balances, the binding signature binds the proofs to the
// transaction, as the binding signature can only be created with
// knowledge of all of the openings to the commitments the transaction
// makes proofs against. (This is where the name binding signature comes
// from).
//
// This allows us to cheaply eliminate a large class of invalid
// transactions upfront -- past this point, we can be sure that the user
// who submitted the transaction actually formed the proofs, rather than
// replaying them from another transaction.
valid_binding_signature(self)?;
// Other checks probably too cheap to be worth splitting into tasks.
num_clues_equal_to_num_outputs(self)?;
check_memo_exists_if_outputs_absent_if_not(self)?;
// This check ensures that transactions contain at least one action.
check_non_empty_transaction(self)?;
let context = self.context();
// Currently, we need to clone the component actions so that the spawned
// futures can have 'static lifetimes. In the future, we could try to
// use the yoke crate, but cloning is almost certainly not a big deal
// for now.
let mut action_checks = JoinSet::new();
for (i, action) in self.actions().cloned().enumerate() {
let context2 = context.clone();
let span = action.create_span(i);
action_checks
.spawn(async move { action.check_stateless(context2).await }.instrument(span));
}
// Now check if any component action failed verification.
while let Some(check) = action_checks.join_next().await {
check??;
}
Ok(())
}
// We only instrument the top-level `check_stateful`, so we get one span for each transaction.
#[instrument(skip(self, state))]
async fn check_historical<S: StateRead + 'static>(&self, state: Arc<S>) -> Result<()> {
let mut action_checks = JoinSet::new();
// SAFETY: Transaction parameters (chain id, expiry height) against chain state
// that cannot change during transaction execution.
// The fee is _not_ checked here, but during execution.
tx_parameters_historical_check(state.clone(), self).await?;
// SAFETY: anchors are historical data and cannot change during transaction execution.
claimed_anchor_is_valid(state.clone(), self).await?;
// SAFETY: FMD parameters cannot change during transaction execution.
fmd_parameters_valid(state.clone(), self).await?;
// Currently, we need to clone the component actions so that the spawned
// futures can have 'static lifetimes. In the future, we could try to
// use the yoke crate, but cloning is almost certainly not a big deal
// for now.
for (i, action) in self.actions().cloned().enumerate() {
let state2 = state.clone();
let span = action.create_span(i);
action_checks
.spawn(async move { action.check_historical(state2).await }.instrument(span));
}
// Now check if any component action failed verification.
while let Some(check) = action_checks.join_next().await {
check??;
}
Ok(())
}
// We only instrument the top-level `execute`, so we get one span for each transaction.
#[instrument(skip(self, state))]
async fn check_and_execute<S: StateWrite>(&self, mut state: S) -> Result<()> {
// While we have access to the full Transaction, hash it to
// obtain a NoteSource we can cache for various actions.
let source = CommitmentSource::Transaction {
id: Some(self.id().0),
};
state.put_current_source(Some(source));
// Check and record the transaction's fee payment,
// before doing the rest of execution.
let gas_used = self.gas_cost();
let fee = self.transaction_body.transaction_parameters.fee;
state.pay_fee(gas_used, fee).await?;
for (i, action) in self.actions().enumerate() {
let span = action.create_span(i);
action
.check_and_execute(&mut state)
.instrument(span)
.await?;
}
// Delete the note source, in case someone else tries to read it.
state.put_current_source(None);
// Record all the clues in this transaction
// To avoid recomputing a hash.
let id = self.id();
for clue in self
.transaction_body
.detection_data
.iter()
.flat_map(|x| x.fmd_clues.iter())
{
state.record_clue(clue.clone(), id.clone()).await?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::ops::Deref;
use anyhow::Result;
use penumbra_sdk_asset::{Value, STAKING_TOKEN_ASSET_ID};
use penumbra_sdk_fee::Fee;
use penumbra_sdk_keys::test_keys;
use penumbra_sdk_shielded_pool::{Note, OutputPlan, SpendPlan};
use penumbra_sdk_tct as tct;
use penumbra_sdk_transaction::{
plan::{CluePlan, DetectionDataPlan, TransactionPlan},
TransactionParameters, WitnessData,
};
use rand_core::OsRng;
use crate::AppActionHandler;
#[tokio::test]
async fn check_stateless_succeeds_on_valid_spend() -> Result<()> {
// Generate two notes controlled by the test address.
let value = Value {
amount: 100u64.into(),
asset_id: *STAKING_TOKEN_ASSET_ID,
};
let note = Note::generate(&mut OsRng, &test_keys::ADDRESS_0, value);
let value2 = Value {
amount: 50u64.into(),
asset_id: *STAKING_TOKEN_ASSET_ID,
};
let note2 = Note::generate(&mut OsRng, &test_keys::ADDRESS_0, value2);
// Record that note in an SCT, where we can generate an auth path.
let mut sct = tct::Tree::new();
// Assume there's a bunch of stuff already in the SCT.
for _ in 0..5 {
let random_note = Note::generate(&mut OsRng, &test_keys::ADDRESS_0, value);
sct.insert(tct::Witness::Keep, random_note.commit())
.unwrap();
}
sct.insert(tct::Witness::Keep, note.commit()).unwrap();
sct.insert(tct::Witness::Keep, note2.commit()).unwrap();
// Do we want to seal the SCT block here?
let auth_path = sct.witness(note.commit()).unwrap();
let auth_path2 = sct.witness(note2.commit()).unwrap();
// Add a single spend and output to the transaction plan such that the
// transaction balances.
let plan = TransactionPlan {
transaction_parameters: TransactionParameters {
expiry_height: 0,
fee: Fee::default(),
chain_id: "".into(),
},
actions: vec![
SpendPlan::new(&mut OsRng, note, auth_path.position()).into(),
SpendPlan::new(&mut OsRng, note2, auth_path2.position()).into(),
OutputPlan::new(&mut OsRng, value, test_keys::ADDRESS_1.deref().clone()).into(),
],
detection_data: Some(DetectionDataPlan {
clue_plans: vec![CluePlan::new(
&mut OsRng,
test_keys::ADDRESS_1.deref().clone(),
1.try_into().unwrap(),
)],
}),
memo: None,
};
// Build the transaction.
let fvk = &test_keys::FULL_VIEWING_KEY;
let sk = &test_keys::SPEND_KEY;
let auth_data = plan.authorize(OsRng, sk)?;
let witness_data = WitnessData {
anchor: sct.root(),
state_commitment_proofs: plan
.spend_plans()
.map(|spend| {
(
spend.note.commit(),
sct.witness(spend.note.commit()).unwrap(),
)
})
.collect(),
};
let tx = plan
.build_concurrent(fvk, &witness_data, &auth_data)
.await
.expect("can build transaction");
let context = tx.context();
// On the verifier side, perform stateless verification.
for action in tx.transaction_body().actions {
let result = action.check_stateless(context.clone()).await;
assert!(result.is_ok())
}
Ok(())
}
#[tokio::test]
async fn check_stateless_fails_on_auth_path_with_wrong_root() -> Result<()> {
// Generate a note controlled by the test address.
let value = Value {
amount: 100u64.into(),
asset_id: *STAKING_TOKEN_ASSET_ID,
};
let note = Note::generate(&mut OsRng, &test_keys::ADDRESS_0, value);
// Record that note in an SCT, where we can generate an auth path.
let mut sct = tct::Tree::new();
let wrong_root = sct.root();
sct.insert(tct::Witness::Keep, note.commit()).unwrap();
let auth_path = sct.witness(note.commit()).unwrap();
// Add a single spend and output to the transaction plan such that the
// transaction balances.
let plan = TransactionPlan {
transaction_parameters: TransactionParameters {
expiry_height: 0,
fee: Fee::default(),
chain_id: "".into(),
},
actions: vec![
SpendPlan::new(&mut OsRng, note, auth_path.position()).into(),
OutputPlan::new(&mut OsRng, value, test_keys::ADDRESS_1.deref().clone()).into(),
],
detection_data: None,
memo: None,
};
// Build the transaction.
let fvk = &test_keys::FULL_VIEWING_KEY;
let sk = &test_keys::SPEND_KEY;
let auth_data = plan.authorize(OsRng, sk)?;
let witness_data = WitnessData {
anchor: sct.root(),
state_commitment_proofs: plan
.spend_plans()
.map(|spend| {
(
spend.note.commit(),
sct.witness(spend.note.commit()).unwrap(),
)
})
.collect(),
};
let mut tx = plan
.build_concurrent(fvk, &witness_data, &auth_data)
.await
.expect("can build transaction");
// Set the anchor to the wrong root.
tx.anchor = wrong_root;
// On the verifier side, perform stateless verification.
let result = tx.check_stateless(()).await;
assert!(result.is_err());
Ok(())
}
}