penumbra_keys/
address.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
//! [Payment address][Address] facilities.

use std::{
    fmt::Display,
    io::{Cursor, Read, Write},
    sync::OnceLock,
};

use anyhow::Context;
use ark_serialize::CanonicalDeserialize;
use decaf377::Fq;
use f4jumble::{f4jumble, f4jumble_inv};
use penumbra_proto::{penumbra::core::keys::v1 as pb, serializers::bech32str, DomainType};
use rand::{CryptoRng, Rng};
use serde::{Deserialize, Serialize};
use sha2::{Digest, Sha256};

mod r1cs;
pub use r1cs::AddressVar;

mod view;
pub use view::AddressView;

use crate::{fmd, ka, keys::Diversifier};

pub const TRANSPARENT_ADDRESS_BECH32_PREFIX: &str = "tpenumbra";

/// The length of an [`Address`] in bytes.
pub const ADDRESS_LEN_BYTES: usize = 80;

/// Number of bits in the address short form divided by the number of bits per Bech32m character
pub const ADDRESS_NUM_CHARS_SHORT_FORM: usize = 24;

/// A valid payment address.
#[derive(Clone, Eq, Serialize, Deserialize)]
#[serde(try_from = "pb::Address", into = "pb::Address")]
pub struct Address {
    /// The address diversifier.
    d: Diversifier,
    /// A cached copy of the diversified base.
    g_d: OnceLock<decaf377::Element>,

    /// The public key for this payment address.
    ///
    /// extra invariant: the bytes in pk_d should be the canonical encoding of an
    /// s value (whether or not it is a valid decaf377 encoding)
    /// this ensures we can use a PaymentAddress to form a note commitment,
    /// which involves hashing s as a field element.
    pk_d: ka::Public,
    /// The transmission key s value.
    transmission_key_s: Fq,

    /// The clue key for this payment address.
    ck_d: fmd::ClueKey,
}

impl std::cmp::PartialEq for Address {
    fn eq(
        &self,
        rhs @ Self {
            d: rhs_d,
            g_d: rhs_g_d,
            pk_d: rhs_pk_d,
            transmission_key_s: rhs_transmission_key_s,
            ck_d: rhs_ck_d,
        }: &Self,
    ) -> bool {
        let lhs @ Self {
            d: lhs_d,
            g_d: lhs_g_d,
            pk_d: lhs_pk_d,
            transmission_key_s: lhs_transmission_key_s,
            ck_d: lhs_ck_d,
        } = self;

        // When a `OnceLock<T>` value is compared, it will only call `get()`, refraining from
        // initializing the value. To make sure that an address that *hasn't* yet accessed its
        // diversified base is considered equal to an address that *has*, compute the base points
        // if they have not already been generated.
        lhs.diversified_generator();
        rhs.diversified_generator();

        // Compare all of the fields.
        lhs_d.eq(rhs_d)
            && lhs_g_d.eq(rhs_g_d)
            && lhs_pk_d.eq(rhs_pk_d)
            && lhs_transmission_key_s.eq(rhs_transmission_key_s)
            && lhs_ck_d.eq(rhs_ck_d)
    }
}

impl std::cmp::PartialOrd for Address {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.to_vec().cmp(&other.to_vec()))
    }
}

impl std::cmp::Ord for Address {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.to_vec().cmp(&other.to_vec())
    }
}

impl std::hash::Hash for Address {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.to_vec().hash(state)
    }
}

impl Address {
    /// Constructs a payment address from its components.
    ///
    /// Returns `None` if the bytes in pk_d are a non-canonical representation
    /// of an [`Fq`] `s` value.
    pub fn from_components(d: Diversifier, pk_d: ka::Public, ck_d: fmd::ClueKey) -> Option<Self> {
        // XXX ugly -- better way to get our hands on the s value?
        // add to decaf377::Encoding? there's compress_to_field already...
        if let Ok(transmission_key_s) = Fq::deserialize_compressed(&pk_d.0[..]) {
            // don't need an error type here, caller will probably .expect anyways
            Some(Self {
                d,
                g_d: OnceLock::new(),
                pk_d,
                ck_d,
                transmission_key_s,
            })
        } else {
            None
        }
    }

    /// Returns a reference to the address diversifier.
    pub fn diversifier(&self) -> &Diversifier {
        &self.d
    }

    /// Returns a reference to the diversified base.
    ///
    /// This method computes the diversified base if it has not been computed yet. This value is
    /// cached after it has been computed once.
    pub fn diversified_generator(&self) -> &decaf377::Element {
        self.g_d
            .get_or_init(|| self.diversifier().diversified_generator())
    }

    /// Returns a reference to the transmission key.
    pub fn transmission_key(&self) -> &ka::Public {
        &self.pk_d
    }

    /// Returns a reference to the clue key.
    pub fn clue_key(&self) -> &fmd::ClueKey {
        &self.ck_d
    }

    /// Returns a reference to the transmission key `s` value.
    pub fn transmission_key_s(&self) -> &Fq {
        &self.transmission_key_s
    }

    /// Converts this address to a vector of bytes.
    pub fn to_vec(&self) -> Vec<u8> {
        let mut bytes = std::io::Cursor::new(Vec::new());
        bytes
            .write_all(&self.diversifier().0)
            .expect("can write diversifier into vec");
        bytes
            .write_all(&self.transmission_key().0)
            .expect("can write transmission key into vec");
        bytes
            .write_all(&self.clue_key().0)
            .expect("can write clue key into vec");

        f4jumble(bytes.get_ref()).expect("can jumble")
    }

    /// Generates a randomized dummy address.
    pub fn dummy<R: CryptoRng + Rng>(rng: &mut R) -> Self {
        loop {
            let mut diversifier_bytes = [0u8; 16];
            rng.fill_bytes(&mut diversifier_bytes);

            let mut pk_d_bytes = [0u8; 32];
            rng.fill_bytes(&mut pk_d_bytes);

            let mut clue_key_bytes = [0; 32];
            rng.fill_bytes(&mut clue_key_bytes);

            let diversifier = Diversifier(diversifier_bytes);
            let addr = Address::from_components(
                diversifier,
                ka::Public(pk_d_bytes),
                fmd::ClueKey(clue_key_bytes),
            );

            if let Some(addr) = addr {
                return addr;
            }
        }
    }

    /// Short form suitable for displaying in a UI.
    pub fn display_short_form(&self) -> String {
        let full_address = format!("{self}");
        // Fixed prefix is `penumbrav2t` plus the Bech32m separator `1`.
        let fixed_prefix = format!("{}{}", bech32str::address::BECH32_PREFIX, '1');
        let num_chars_to_display = fixed_prefix.len() + ADDRESS_NUM_CHARS_SHORT_FORM;

        format!("{}…", &full_address[0..num_chars_to_display])
    }

    /// Compat (bech32 non-m) address format
    pub fn compat_encoding(&self) -> String {
        let proto_address = pb::Address::from(self);
        bech32str::encode(
            &proto_address.inner,
            bech32str::compat_address::BECH32_PREFIX,
            bech32str::Bech32,
        )
    }

    /// Generate a Noble forwarding address.
    pub fn noble_forwarding_address(&self, channel: &str) -> NobleForwardingAddress {
        NobleForwardingAddress {
            channel: channel.to_string(),
            recipient: format!("{}", self),
        }
    }

    /// Encodes the address as a transparent address if it has zero diversifier and clue key.
    /// Returns `None` if the address doesn't meet the requirements for a transparent address.
    pub fn encode_as_transparent_address(&self) -> Option<String> {
        // Check if diversifier is zero
        if self.diversifier().0 != [0u8; 16] {
            return None;
        }

        // Check if clue key is identity
        if self.clue_key().0 != [0u8; 32] {
            return None;
        }

        // If both are zero, encode the transmission key
        Some(bech32str::encode(
            &self.transmission_key().0,
            TRANSPARENT_ADDRESS_BECH32_PREFIX,
            bech32str::Bech32,
        ))
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NobleForwardingAddress {
    pub channel: String,
    pub recipient: String,
}

impl NobleForwardingAddress {
    pub fn bytes(&self) -> Vec<u8> {
        // Based on https://github.com/noble-assets/forwarding/blob/main/x/forwarding/types/account.go#L17
        let channel = self.channel.clone();
        let recipient = self.recipient.clone();
        let bz = format!("{channel}{recipient}").as_bytes().to_owned();
        let th = Sha256::digest("forwarding".as_bytes());
        let mut hasher = Sha256::new();
        hasher.update(th);
        hasher.update(bz);

        // This constructs the account bytes for the Noble forwarding address
        // Only use bytes 12 and on:
        hasher.finalize()[12..].to_vec()
    }
}

impl Display for NobleForwardingAddress {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        let addr_bytes = &self.bytes();

        write!(
            f,
            "{}",
            bech32str::encode(&addr_bytes, "noble", bech32str::Bech32)
        )
    }
}

impl DomainType for Address {
    type Proto = pb::Address;
}

impl From<Address> for pb::Address {
    fn from(a: Address) -> Self {
        Self::from(&a)
    }
}

impl From<&Address> for pb::Address {
    fn from(a: &Address) -> Self {
        pb::Address {
            inner: a.to_vec(),
            // Always produce encodings without the alt format.
            alt_bech32m: String::new(),
        }
    }
}

impl TryFrom<pb::Address> for Address {
    type Error = anyhow::Error;

    fn try_from(value: pb::Address) -> Result<Self, Self::Error> {
        match (value.inner.is_empty(), value.alt_bech32m.is_empty()) {
            (false, true) => value.inner.try_into(),
            (true, false) => value.alt_bech32m.parse(),
            (false, false) => Err(anyhow::anyhow!(
                "Address proto has both inner and alt_bech32m fields set"
            )),
            (true, true) => Err(anyhow::anyhow!(
                "Address proto has neither inner nor alt_bech32m fields set"
            )),
        }
    }
}

impl std::fmt::Display for Address {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        let proto_address = pb::Address::from(self);
        f.write_str(&bech32str::encode(
            &proto_address.inner,
            bech32str::address::BECH32_PREFIX,
            bech32str::Bech32m,
        ))
    }
}

impl std::fmt::Debug for Address {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        <Self as std::fmt::Display>::fmt(self, f)
    }
}

impl std::str::FromStr for Address {
    type Err = anyhow::Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s.starts_with(TRANSPARENT_ADDRESS_BECH32_PREFIX) {
            let dzero = Diversifier([0u8; 16]);

            let pk_dzero_bytes: [u8; 32] =
                bech32str::decode(s, TRANSPARENT_ADDRESS_BECH32_PREFIX, bech32str::Bech32)?
                    .try_into()
                    .map_err(|bytes: Vec<u8>| {
                        anyhow::anyhow!("wrong length {}, expected 32", bytes.len())
                    })?;
            let pk_dzero = ka::Public(pk_dzero_bytes);

            let ck_id = fmd::ClueKey([0u8; 32]);

            let address = Self::from_components(dzero, pk_dzero, ck_id)
                .ok_or_else(|| anyhow::anyhow!("could not reconstruct transparent address"))?;

            // Verify this is a valid transparent address, bailing if not
            if address.encode_as_transparent_address().is_none() {
                return Err(anyhow::anyhow!("invalid transparent address components"));
            }

            Ok(address)
        } else if s.starts_with(bech32str::compat_address::BECH32_PREFIX) {
            pb::Address {
                inner: bech32str::decode(
                    s,
                    bech32str::compat_address::BECH32_PREFIX,
                    bech32str::Bech32,
                )?,
                alt_bech32m: String::new(),
            }
            .try_into()
        } else {
            pb::Address {
                inner: bech32str::decode(s, bech32str::address::BECH32_PREFIX, bech32str::Bech32m)?,
                alt_bech32m: String::new(),
            }
            .try_into()
        }
    }
}

impl TryFrom<Vec<u8>> for Address {
    type Error = anyhow::Error;

    fn try_from(jumbled_vec: Vec<u8>) -> Result<Self, Self::Error> {
        (&jumbled_vec[..]).try_into()
    }
}

impl TryFrom<&Vec<u8>> for Address {
    type Error = anyhow::Error;

    fn try_from(jumbled_vec: &Vec<u8>) -> Result<Self, Self::Error> {
        (jumbled_vec[..]).try_into()
    }
}

impl TryFrom<&[u8]> for Address {
    type Error = anyhow::Error;

    fn try_from(jumbled_bytes: &[u8]) -> Result<Self, Self::Error> {
        if jumbled_bytes.len() != ADDRESS_LEN_BYTES {
            anyhow::bail!("address malformed");
        }

        let unjumbled_bytes = f4jumble_inv(jumbled_bytes).context("invalid address")?;
        let mut bytes = Cursor::new(unjumbled_bytes);

        let mut diversifier_bytes = [0u8; 16];
        bytes
            .read_exact(&mut diversifier_bytes)
            .context("could not read diversifier bytes")?;

        let mut pk_d_bytes = [0u8; 32];
        bytes
            .read_exact(&mut pk_d_bytes)
            .context("could not read transmission key bytes")?;

        let mut clue_key_bytes = [0; 32];
        bytes
            .read_exact(&mut clue_key_bytes)
            .context("could not read clue key bytes")?;

        let diversifier = Diversifier(diversifier_bytes);

        Address::from_components(
            diversifier,
            ka::Public(pk_d_bytes),
            fmd::ClueKey(clue_key_bytes),
        )
        .ok_or_else(|| anyhow::anyhow!("could not create address from components"))
    }
}

/// Assert the addresses are both [`Send`] and [`Sync`].
//  NB: allow dead code, because this block only contains compile-time assertions.
#[allow(dead_code)]
mod assert_address_is_send_and_sync {
    fn is_send<T: Send>() {}
    fn is_sync<T: Sync>() {}
    fn f() {
        is_send::<super::Address>();
        is_sync::<super::Address>();
    }
}

#[cfg(test)]
mod tests {
    use std::str::FromStr;

    use rand_core::OsRng;

    use super::*;
    use crate::keys::{Bip44Path, SeedPhrase, SpendKey};

    #[test]
    fn test_address_encoding() {
        let rng = OsRng;
        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let (dest, _dtk_d) = ivk.payment_address(0u32.into());

        let bech32m_addr = format!("{dest}");

        let addr = Address::from_str(&bech32m_addr).expect("can decode valid address");

        use penumbra_proto::Message;

        let proto_addr = dest.encode_to_vec();
        let proto_addr_bech32m = pb::Address {
            inner: Vec::new(),
            alt_bech32m: bech32m_addr,
        }
        .encode_to_vec();
        let proto_addr_direct: pb::Address = dest.clone().into();
        let addr_from_proto: Address = proto_addr_direct
            .try_into()
            .expect("can convert from proto back to address");

        let addr2 = Address::decode(proto_addr.as_ref()).expect("can decode valid address");
        let addr3 = Address::decode(proto_addr_bech32m.as_ref()).expect("can decode valid address");

        assert_eq!(addr, dest);
        assert_eq!(addr2, dest);
        assert_eq!(addr3, dest);
        assert_eq!(addr_from_proto, dest);
    }

    #[test]
    fn test_compat_encoding() {
        let rng = OsRng;
        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let (dest, _dtk_d) = ivk.payment_address(0u32.into());

        let bech32_addr = dest.compat_encoding();

        let addr = Address::from_str(&bech32_addr).expect("can decode valid address");

        let proto_addr = dest.encode_to_vec();

        let addr2 = Address::decode(proto_addr.as_ref()).expect("can decode valid address");

        assert_eq!(addr, dest);
        assert_eq!(addr2, dest);
    }

    #[test]
    fn test_bytes_roundtrip() {
        let rng = OsRng;
        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let (dest, _dtk_d) = ivk.payment_address(0u32.into());

        let bytes = dest.to_vec();
        let addr: Address = bytes.try_into().expect("can decode valid address");

        assert_eq!(addr, dest);
    }

    #[test]
    fn test_address_keys_are_diversified() {
        let rng = OsRng;
        let seed_phrase = SeedPhrase::generate(rng);
        let sk = SpendKey::from_seed_phrase_bip44(seed_phrase, &Bip44Path::new(0));
        let fvk = sk.full_viewing_key();
        let ivk = fvk.incoming();
        let (dest1, dtk_d1) = ivk.payment_address(0u32.into());
        let (dest2, dtk_d2) = ivk.payment_address(1u32.into());

        assert!(dest1.transmission_key() != dest2.transmission_key());
        assert!(dest1.clue_key() != dest2.clue_key());
        assert!(dtk_d1.to_bytes() != dtk_d2.to_bytes());
    }
}