penumbra_dex/lp/trading_function.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
use anyhow::{anyhow, Result};
use penumbra_asset::{asset, Value};
use penumbra_num::{fixpoint::U128x128, Amount};
use penumbra_proto::{penumbra::core::component::dex::v1 as pb, DomainType};
use serde::{Deserialize, Serialize};
use tracing::instrument;
use crate::TradingPair;
use super::Reserves;
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(try_from = "pb::TradingFunction", into = "pb::TradingFunction")]
pub struct TradingFunction {
pub component: BareTradingFunction,
pub pair: TradingPair,
}
impl TradingFunction {
pub fn new(pair: TradingPair, fee: u32, p: Amount, q: Amount) -> Self {
Self {
component: BareTradingFunction::new(fee, p, q),
pair,
}
}
/// Checks that the specified input's asset type matches either end of this
/// the trading function's pair. Returns `true` if so, `false` otherwise.
pub fn matches_input(&self, input_id: asset::Id) -> bool {
input_id == self.pair.asset_1() || input_id == self.pair.asset_2()
}
/// Fills a trade of an input value against this position, returning the
/// unfilled amount of the input asset, the updated reserves, and the output
/// amount.
///
/// # Errors
/// This method errors if:
/// - the asset type of the input does not match either end of the
/// `TradingPair`.
/// - an overflow occurs during execution.
pub fn fill(
&self,
input: Value,
reserves: &Reserves,
) -> anyhow::Result<(Value, Reserves, Value)> {
tracing::debug!(?input, ?reserves, "filling trade");
if input.asset_id == self.pair.asset_1() {
let (unfilled, new_reserves, output) = self.component.fill(input.amount, reserves)?;
Ok((
Value {
amount: unfilled,
asset_id: self.pair.asset_1(),
},
new_reserves,
Value {
amount: output,
asset_id: self.pair.asset_2(),
},
))
} else if input.asset_id == self.pair.asset_2() {
let flipped_reserves = reserves.flip();
let (unfilled, new_reserves, output) = self
.component
.flip()
.fill(input.amount, &flipped_reserves)?;
Ok((
Value {
amount: unfilled,
asset_id: self.pair.asset_2(),
},
new_reserves.flip(),
Value {
amount: output,
asset_id: self.pair.asset_1(),
},
))
} else {
Err(anyhow!(
"input asset id {:?} did not match either end of trading pair {:?}",
input.asset_id,
self.pair
))
}
}
/// Attempts to compute the input value required to produce the given output
/// value, returning the input value and updated reserves if successful.
/// Returns `None` if the output value exceeds the liquidity of the reserves.
///
/// # Errors
/// This method errors if:
/// - The asset type of the output does not match either end of the reserves.
/// - An overflow occurs during the computation.
pub fn fill_output(
&self,
reserves: &Reserves,
output: Value,
) -> anyhow::Result<Option<(Reserves, Value)>> {
if output.asset_id == self.pair.asset_2() {
Ok(self
.component
.fill_output(reserves, output.amount)?
.map(|(new_reserves, input)| {
(
new_reserves,
Value {
amount: input,
asset_id: self.pair.asset_1(),
},
)
}))
} else if output.asset_id == self.pair.asset_1() {
// Flip the reserves and the trading function...
let flipped_reserves = reserves.flip();
let flipped_function = self.component.flip();
Ok(flipped_function
.fill_output(&flipped_reserves, output.amount)?
.map(|(new_reserves, input)| {
(
// ... then flip the reserves back.
new_reserves.flip(),
Value {
amount: input,
asset_id: self.pair.asset_2(),
},
)
}))
} else {
Err(anyhow!(
"output asset id {:?} did not match either end of trading pair {:?}",
output.asset_id,
self.pair
))
}
}
pub fn orient_end(&self, end: asset::Id) -> Option<BareTradingFunction> {
if end == self.pair.asset_2() {
Some(self.component.clone())
} else if end == self.pair.asset_1() {
Some(self.component.flip())
} else {
None
}
}
pub fn orient_start(&self, start: asset::Id) -> Option<BareTradingFunction> {
if start == self.pair.asset_1() {
Some(self.component.clone())
} else if start == self.pair.asset_2() {
Some(self.component.flip())
} else {
None
}
}
}
impl TryFrom<pb::TradingFunction> for TradingFunction {
type Error = anyhow::Error;
fn try_from(phi: pb::TradingFunction) -> Result<Self, Self::Error> {
Ok(Self {
component: phi
.component
.ok_or_else(|| anyhow::anyhow!("missing BareTradingFunction"))?
.try_into()?,
pair: phi
.pair
.ok_or_else(|| anyhow::anyhow!("missing TradingPair"))?
.try_into()?,
})
}
}
impl From<TradingFunction> for pb::TradingFunction {
fn from(phi: TradingFunction) -> Self {
Self {
component: Some(phi.component.into()),
pair: Some(phi.pair.into()),
}
}
}
impl DomainType for TradingFunction {
type Proto = pb::TradingFunction;
}
/// The data describing a trading function.
///
/// This implicitly treats the trading function as being between assets 1 and 2,
/// without specifying what those assets are, to avoid duplicating data (each
/// asset ID alone is twice the size of the trading function). Which assets correspond
/// to asset 1 and 2 is given by the canonical ordering of the pair.
///
/// The trading function `phi(R) = p*R_1 + q*R_2` is a CFMM with a constant-sum,
/// and a fee (`0 <= fee < 10_000`) expressed in basis points.
///
/// The valuations (`p`, `q`) for each asset inform the rate (or price) at which these
/// assets trade against each other.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(try_from = "pb::BareTradingFunction", into = "pb::BareTradingFunction")]
pub struct BareTradingFunction {
/// The fee, expressed in basis points.
///
/// The fee percentage of the trading function (`gamma`) is normalized
/// according to its maximum value (10_000 bps, i.e. 100%):
/// `gamma = (10_000 - fee) / 10_000`
pub fee: u32,
/// The valuation for the first asset of the pair, according to canonical ordering.
pub p: Amount,
/// The valuation for the second asset of the pair, according to canonical ordering.
pub q: Amount,
}
impl BareTradingFunction {
pub fn new(fee: u32, p: Amount, q: Amount) -> Self {
Self { fee, p, q }
}
pub fn flip(&self) -> Self {
Self {
fee: self.fee,
p: self.q,
q: self.p,
}
}
#[deprecated(note = "this method is not yet implemented")]
pub fn fill_input(&self, _reserves: &Reserves, _delta_1: Amount) -> Option<(Reserves, Amount)> {
unimplemented!()
}
/// Determine the amount of asset 1 that can be filled for a given amount of asset 2,
/// propagating rounding error to the input amount `delta_1` rather than the output amount `lambda_2`.
/// Returns `None` if the amount of asset 2 is greater than the reserves of asset 2.
///
/// # Errors
/// This method returns an error if an overflow occurs when computing the fillable amount of asset 1.
#[instrument(skip(self, reserves, lambda_2))]
pub fn fill_output(
&self,
reserves: &Reserves,
lambda_2: Amount,
) -> anyhow::Result<Option<(Reserves, Amount)>> {
if lambda_2 > reserves.r2 {
tracing::debug!(?reserves, ?lambda_2, "lambda_2 > r2, no fill possible");
return Ok(None);
}
// We must work backwards to infer what `delta_1` (input) correspond
// exactly to a fill of `lambda_2 = r2`.
// lambda_2 = effective_price * delta_1
// and since p,q != 0, effective_price != 0:
// delta_1 = r2 * effective_price^-1
let fillable_delta_1 = self.convert_to_delta_1(lambda_2.into())?;
// We burn the rouding error by apply `ceil` to delta_1:
//
// delta_1_star = Ceil(delta_1)
// TODO: round_up is now fallible
let fillable_delta_1_exact: Amount = fillable_delta_1
.round_up()
.expect("no overflow")
.try_into()
.expect("rounded up to integral value");
let new_reserves = Reserves {
r1: reserves.r1 + fillable_delta_1_exact,
// We checked that lambda_2 <= reserves.r2 above.
r2: reserves.r2 - lambda_2,
};
tracing::debug!(
?reserves,
?lambda_2,
%fillable_delta_1,
?fillable_delta_1_exact,
?new_reserves,
"computed reverse fill"
);
Ok(Some((new_reserves, fillable_delta_1_exact)))
}
/// Fills a trade of asset 1 to asset 2 against the given reserves,
/// returning the unfilled amount of asset 1, the updated reserves, and the
/// output amount of asset 2.
///
/// # Errors
/// This method errors if an overflow occurs when computing the trade output amount,
/// or the fillable amount of asset 1.
pub fn fill(&self, delta_1: Amount, reserves: &Reserves) -> Result<(Amount, Reserves, Amount)> {
// We distinguish two cases, which only differ in their rounding
// behavior.
//
// If the desired fill is less than the original reserves, we want to
// work "forward" from the input amount `delta_1` to the output amount
// `lambda_2`, consuming exactly `delta_1` and rounding `lambda_2`
// (down, so that we're burning the rounding error).
//
// If the desired fill is greater than the original reserves, however,
// we want to work "backward" from the available reserves `R_2` (the
// "max fill") to the input amount `delta_1`, producing exactly
// `lambda_2 = R_2` output and rounding `delta_1` (up, so that we're
// burning the rounding error).
//
// We want to be sure that in either case, we only round once, and derive
// other quantities exactly from the rounded quantity. This ensures
// conservation of value.
//
// This also ensures that we cleanly fill the position, rather than
// leaving some dust amount of reserves in it. Otherwise, we might try
// executing against it again on a subsequent iteration, even though it
// was essentially filled.
// The effective price is the conversion rate between `2` and `1`:
// effective_price = (q/[gamma*p])
// effective_price_inv = gamma*(p/q)
// The trade output `lambda_2` is given by `effective_price * delta_1`, however, to avoid
// rounding loss, we prefer to first compute the numerator `(gamma * delta_1 * q)`, and then
// perform division.
let delta_1_fp = U128x128::from(delta_1);
let tentative_lambda_2 = self.convert_to_lambda_2(delta_1_fp)?;
if tentative_lambda_2 <= reserves.r2.into() {
// Observe that for the case when `tentative_lambda_2` equals
// `reserves.r1`, rounding it down does not change anything since
// `reserves.r1` is integral. Therefore `reserves.r1 - lambda_2 >= 0`.
let lambda_2: Amount = tentative_lambda_2
.round_down()
.try_into()
.expect("lambda_2 fits in an Amount");
let new_reserves = Reserves {
r1: reserves.r1 + delta_1,
r2: reserves.r2 - lambda_2,
};
Ok((0u64.into(), new_reserves, lambda_2))
} else {
let r2: U128x128 = reserves.r2.into();
// In this case, we don't have enough reserves to completely execute
// the fill. So we know that `lambda_2 = r2` or that the output will
// consist of all the reserves available.
//
// We must work backwards to infer what `delta_1` (input) correspond
// exactly to a fill of `lambda_2 = r2`.
//
// Normally, we would have:
//
// lambda_2 = effective_price * delta_1
// since lambda_2 = r2, we have:
//
// r2 = effective_price * delta_1, and since p,q != 0, effective_price != 0:
// delta_1 = r2 * effective_price^-1
let fillable_delta_1 = self.convert_to_delta_1(r2)?;
// We burn the rouding error by apply `ceil` to delta_1:
//
// delta_1_star = Ceil(delta_1)
// TODO: round_up is now fallible
let fillable_delta_1_exact: Amount = fillable_delta_1
.round_up()
.expect("no overflow")
.try_into()
.expect("fillable_delta_1 fits in an Amount");
// How to show that: `unfilled_amount >= 0`:
// In this branch, we have:
// lambda_2 > R_2, where lambda_2 = delta_1 * effective_price:
// delta_1 * effective_price > R_2, in other words:
// <=> delta_1 > R_2 * (effective_price)^-1, in other words:
// delta_1 > R_2 * effective_price_inv
//
// fillable_delta_1_exact = ceil(RHS) is integral (rounded), and
// delta_1 is integral by definition.
//
// Therefore, we have:
//
// delta_1 >= fillable_delta_1_exact, or in other words:
//
// unfilled_amount >= 0.
let unfilled_amount = delta_1 - fillable_delta_1_exact;
let new_reserves = Reserves {
r1: reserves.r1 + fillable_delta_1_exact,
r2: 0u64.into(),
};
Ok((unfilled_amount, new_reserves, reserves.r2))
}
}
/// Returns a byte key for this trading function with the property that the
/// lexicographic ordering on byte keys is the same as ordering the
/// corresponding trading functions by effective price.
///
/// This allows trading functions to be indexed by price using a key-value store.
pub fn effective_price_key_bytes(&self) -> [u8; 32] {
self.effective_price().to_bytes()
}
/// Returns the inverse of the `effective_price`, in other words,
/// the exchange rate from `asset_1` to `asset_2`:
/// `delta_1 * effective_price_inv = lambda_2`
pub fn effective_price_inv(&self) -> U128x128 {
let p = U128x128::from(self.p);
let q = U128x128::from(self.q);
let price_ratio = (p / q).expect("q != 0 and p,q <= 2^60");
(price_ratio * self.gamma()).expect("2^-1 <= gamma <= 1")
}
/// Returns the exchange rate from `asset_2` to `asset_1, inclusive
/// of fees:
/// `lambda_2 * effective_price = delta_1`
pub fn effective_price(&self) -> U128x128 {
let p = U128x128::from(self.p);
let q = U128x128::from(self.q);
let price_ratio = (q / p).expect("p != 0 and p,q <= 2^60");
price_ratio.checked_div(&self.gamma()).expect("gamma != 0")
}
/// Converts an amount `delta_1` into `lambda_2`, using the inverse of the effective price.
pub fn convert_to_lambda_2(&self, delta_1: U128x128) -> anyhow::Result<U128x128> {
let lambda_2 = self.effective_price_inv() * delta_1;
Ok(lambda_2?)
}
/// Converts an amount of `lambda_2` into `delta_1`, using the effective price.
pub fn convert_to_delta_1(&self, lambda_2: U128x128) -> anyhow::Result<U128x128> {
let delta_1 = self.effective_price() * lambda_2;
Ok(delta_1?)
}
/// Returns `gamma` i.e. the fee percentage.
/// The fee is expressed in basis points (0 <= fee < 5000), where 5000bps = 50%.
///
/// ## Bounds:
/// Since the fee `f` is bound by `0 <= < 5_000`, we have `1/2 <= gamma <= 1`.
///
/// ## Examples:
///
/// * A fee of 0% (0 bps) results in a discount factor of 1.
/// * A fee of 30 bps (30 bps) results in a discount factor of 0.997.
/// * A fee of 100% (10_000bps) results in a discount factor of 0.
pub fn gamma(&self) -> U128x128 {
(U128x128::from(10_000 - self.fee) / U128x128::from(10_000u64)).expect("10_000 != 0")
}
/// Compose two trading functions together
#[deprecated(note = "this method is not yet implemented")]
pub fn compose(&self, _phi: BareTradingFunction) -> BareTradingFunction {
unimplemented!()
}
}
impl DomainType for BareTradingFunction {
type Proto = pb::BareTradingFunction;
}
impl TryFrom<pb::BareTradingFunction> for BareTradingFunction {
type Error = anyhow::Error;
fn try_from(value: pb::BareTradingFunction) -> Result<Self, Self::Error> {
Ok(Self {
fee: value.fee,
p: value
.p
.ok_or_else(|| anyhow::anyhow!("missing p"))?
.try_into()?,
q: value
.q
.ok_or_else(|| anyhow::anyhow!("missing q"))?
.try_into()?,
})
}
}
impl From<BareTradingFunction> for pb::BareTradingFunction {
fn from(value: BareTradingFunction) -> Self {
Self {
fee: value.fee,
p: Some(value.p.into()),
q: Some(value.q.into()),
}
}
}
#[cfg(test)]
mod tests {
use ark_ff::Zero;
use decaf377::Fq;
use penumbra_asset::asset::Id;
use super::*;
#[test]
/// Test that effective prices are encoded in a way that preserves their
/// numerical ordering. Numerical ordering should transfer over lexicographic order
/// of the encoded prices.
fn test_trading_function_to_bytes() {
let btf = BareTradingFunction {
fee: 0,
p: 2_000_000u32.into(),
q: 1_000_000u32.into(),
};
assert_eq!(btf.gamma(), U128x128::from(1u64));
assert_eq!(
btf.effective_price_inv(),
U128x128::ratio(btf.p, btf.q).unwrap()
);
let bytes1 = btf.effective_price_key_bytes();
let price1 = btf.effective_price();
let btf = BareTradingFunction {
fee: 100,
p: 2_000_000u32.into(),
q: 1_000_000u32.into(),
};
// Compares the `BareTradingFunction::gamma` to a scaled ratio (10^4)
let gamma_term =
U128x128::ratio::<Amount>(99_000_000u64.into(), 100_000_000u64.into()).unwrap();
assert_eq!(btf.gamma(), gamma_term,);
let price_without_fee = U128x128::ratio(btf.p, btf.q).unwrap();
let price_with_fee = (price_without_fee * gamma_term).unwrap();
assert_eq!(btf.effective_price_inv(), price_with_fee);
let bytes2 = btf.effective_price_key_bytes();
let price2 = btf.effective_price();
// Asserts that the lexicographic ordering of the encoded prices matches
// their ask price ordering (smaller = better).
//
// price1: trading function with 0 bps fee.
// price2: trading function with 100 bps fee.
// price1 is "better" than price2.
assert!(price1 < price2);
assert!(bytes1 < bytes2);
}
#[test]
/// Test that filling a position follows the asset conservation law,
/// meaning that the R + Delta = R + Lambda
///
/// There is two branches of the `BareTradingFunction::fill` method that we
/// want to exercise. The first one is executed when there are enough reserves
/// available to perform the fill.
///
/// The second case, is when the output is constrained by the available reserves.
fn fill_conserves_value() {
let btf = BareTradingFunction {
fee: 0,
p: 1_u32.into(),
q: 3_u32.into(),
};
// First, we want to test asset conservations in the case of a partial fill:
// D_1 = 10,000,000
// D_2 = 0
//
// price: p/q = 1/3, so you get 1 unit of asset 2 for 3 units of asset 1.
//
// L_1 = 0
// L_2 = 3_333_333 (D_1/3)
let old_reserves = Reserves {
r1: 1_000_000u64.into(),
r2: 100_000_000u64.into(),
};
let delta_1 = 10_000_000u64.into();
let delta_2 = 0u64.into();
let (lambda_1, new_reserves, lambda_2) = btf
.fill(delta_1, &old_reserves)
.expect("filling can't fail");
// Conservation of value:
assert_eq!(old_reserves.r1 + delta_1, new_reserves.r1 + lambda_1);
assert_eq!(old_reserves.r2 + delta_2, new_reserves.r2 + lambda_2);
// Exact amount checks:
assert_eq!(lambda_1, 0u64.into());
assert_eq!(lambda_2, 3_333_333u64.into());
// Here we test trying to swap or more output than what is available in
// the reserves:
// lambda_1 = delta_1/3
// lambda_2 = r2
let old_reserves = Reserves {
r1: 1_000_000u64.into(),
r2: 100_000_000u64.into(),
};
let delta_1 = 600_000_000u64.into();
let delta_2 = 0u64.into();
let (lambda_1, new_reserves, lambda_2) = btf
.fill(delta_1, &old_reserves)
.expect("filling can't fail");
// Conservation of value:
assert_eq!(old_reserves.r1 + delta_1, new_reserves.r1 + lambda_1);
assert_eq!(old_reserves.r2 + delta_2, new_reserves.r2 + lambda_2);
// Exact amount checks:
assert_eq!(lambda_1, 300_000_000u64.into());
assert_eq!(lambda_2, old_reserves.r2);
assert_eq!(new_reserves.r2, 0u64.into());
}
#[test]
fn fill_bad_rounding() {
let btf = BareTradingFunction {
fee: 0,
p: 12u32.into(),
q: 10u32.into(),
};
let old_reserves = Reserves {
r1: 0u64.into(),
r2: 120u64.into(),
};
let delta_1 = 100u64.into();
let (lambda_1, new_reserves, lambda_2) = btf
.fill(delta_1, &old_reserves)
.expect("filling can't fail");
// Conservation of value:
assert_eq!(old_reserves.r1 + delta_1, new_reserves.r1 + lambda_1);
assert_eq!(old_reserves.r2 + 0u64.into(), new_reserves.r2 + lambda_2);
// Exact amount checks:
assert_eq!(lambda_1, 0u64.into());
// We expect some lossy rounding here:
assert_eq!(lambda_2, 119u64.into());
}
#[test]
/// Test that the `convert_to_delta_1` and `convert_to_lambda_2` helper functions
/// are aligned with `effective_price` and `effective_price_inv` calculations.
fn test_conversion_helpers() {
let btf = BareTradingFunction {
fee: 150,
p: 12u32.into(),
q: 55u32.into(),
};
let one = U128x128::from(1u64);
assert_eq!(btf.effective_price(), btf.convert_to_delta_1(one).unwrap());
assert_eq!(
btf.effective_price_inv(),
btf.convert_to_lambda_2(one).unwrap()
);
}
#[test]
/// Test that the `TradingFunction` fills work correctly.
fn test_fill_trading_function() {
let a = Id(Fq::zero());
let b = Id(Fq::ONE);
let c = Id(Fq::ONE + Fq::ONE);
assert!(a < b);
assert!(b < c);
// First, we test that everything works well when we do a fill from A to B
// where id(A) < id(B).
let p = Amount::from(1u64);
let q = Amount::from(2u64);
let phi = TradingFunction::new(TradingPair::new(a, b), 0u32, p, q);
let reserves = Reserves {
r1: 0u64.into(),
r2: 100u64.into(),
};
let delta_1 = Value {
amount: 200u64.into(),
asset_id: a,
};
// TradingFunction::fill returns the unfilled amount, the new reserves, and the output:
let (lambda_1, new_reserves, lambda_2) = phi.fill(delta_1, &reserves).unwrap();
assert_eq!(lambda_1.amount, Amount::zero());
assert_eq!(lambda_1.asset_id, delta_1.asset_id);
assert_eq!(lambda_2.amount, reserves.r2);
assert_eq!(lambda_2.asset_id, b);
assert_eq!(new_reserves.r1, Amount::from(200u64));
assert_eq!(new_reserves.r2, Amount::zero());
// Now, we check that we fill correctly from B to A:
// where id(A) < id(B).
let delta_2 = Value {
amount: 50u64.into(),
asset_id: b,
};
let reserves = Reserves {
r1: 100u64.into(),
r2: 0u64.into(),
};
let (lambda_2, new_reserves, lambda_1) = phi.fill(delta_2, &reserves).unwrap();
assert_eq!(lambda_2.amount, Amount::zero());
assert_eq!(lambda_2.asset_id, b);
assert_eq!(lambda_1.amount, Amount::from(100u64));
assert_eq!(lambda_1.asset_id, a);
assert_eq!(new_reserves.r1, Amount::zero());
assert_eq!(new_reserves.r2, Amount::from(50u64));
}
}