penumbra_dex/lp/
position.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
use anyhow::{anyhow, Context};
use penumbra_asset::{asset, Value};
use penumbra_num::Amount;
use penumbra_proto::{
    penumbra::core::component::dex::v1 as pb, serializers::bech32str, DomainType,
};
use rand_core::CryptoRngCore;
use serde::{Deserialize, Serialize};

use crate::{DirectedTradingPair, TradingPair};

use super::{trading_function::TradingFunction, Reserves};

/// Reserve amounts for positions must be at most 80 bits wide.
pub const MAX_RESERVE_AMOUNT: u128 = (1 << 80) - 1;

/// A trading function's fee (spread) must be at most 50% (5000 bps)
pub const MAX_FEE_BPS: u32 = 5000;

/// Encapsulates the immutable parts of the position (phi/nonce), along
/// with the mutable parts (state/reserves).
#[derive(Clone, Serialize, Deserialize, PartialEq, Eq)]
#[serde(try_from = "pb::Position", into = "pb::Position")]
pub struct Position {
    pub state: State,
    pub reserves: Reserves,
    /// A trading function to a specific trading pair.
    pub phi: TradingFunction,
    /// A random value used to disambiguate different positions with the exact
    /// same trading function.  The position ID is a hash of the trading
    /// function and the nonce; the chain rejects transactions creating
    /// duplicate position [`Id`]s, so it can track position ownership with a
    /// sequence of stateful NFTs based on the [`Id`].
    pub nonce: [u8; 32],
    /// Set to `true` if a position is a limit-order, meaning that it will be closed after being
    /// filled against.
    pub close_on_fill: bool,
}

impl std::fmt::Debug for Position {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Position")
            .field("state", &self.state)
            .field("reserves", &self.reserves)
            .field("phi", &self.phi)
            .field("nonce", &hex::encode(self.nonce))
            .finish()
    }
}

impl Position {
    /// Construct a new opened [Position] with a random nonce.
    ///
    /// The `p` value is the coefficient for the position's trading function that will be
    /// associated with the start asset, and the `q` value is the coefficient for the end asset.
    ///
    /// The reserves `r1` and `r2` also correspond to the start and end assets, respectively.
    pub fn new<R: CryptoRngCore>(
        mut rng: R,
        pair: DirectedTradingPair,
        fee: u32,
        p: Amount,
        q: Amount,
        reserves: Reserves,
    ) -> Position {
        // Internally mutable so we can swap the `p` and `q` values if necessary.
        let mut p = p;
        let mut q = q;
        let mut reserves = reserves;

        let mut nonce_bytes = [0u8; 32];
        rng.fill_bytes(&mut nonce_bytes);

        // The [`TradingFunction`] uses a canonical non-directed trading pair ([`TradingPair`]).
        // This means that the `p` and `q` values may need to be swapped, depending on the canonical
        // representation of the trading pair.
        let canonical_tp: TradingPair = pair.into();

        // The passed-in `p` value is associated with the start asset, as is `r1`.
        if pair.start != canonical_tp.asset_1() {
            // The canonical representation of the trading pair has the start asset as the second
            // asset, so we need to swap the `p` and `q` values.
            std::mem::swap(&mut p, &mut q);

            // The ordering of the reserves should also be swapped.
            reserves = Reserves {
                r1: reserves.r2,
                r2: reserves.r1,
            };
        }

        let phi = TradingFunction::new(canonical_tp, fee, p, q);
        Position {
            phi,
            nonce: nonce_bytes,
            state: State::Opened,
            reserves,
            close_on_fill: false,
        }
    }

    /// Construct a new opened [Position] with a supplied random nonce.
    pub fn new_with_nonce(
        nonce: [u8; 32],
        pair: DirectedTradingPair,
        fee: u32,
        p: Amount,
        q: Amount,
        reserves: Reserves,
    ) -> Position {
        // Internally mutable so we can swap the `p` and `q` values if necessary.
        let mut p = p;
        let mut q = q;
        let mut reserves = reserves;

        // The [`TradingFunction`] uses a canonical non-directed trading pair ([`TradingPair`]).
        // This means that the `p` and `q` values may need to be swapped, depending on the canonical
        // representation of the trading pair.
        let canonical_tp: TradingPair = pair.into();

        // The passed-in `p` value is associated with the start asset, as is `r1`.
        if pair.start != canonical_tp.asset_1() {
            // The canonical representation of the trading pair has the start asset as the second
            // asset, so we need to swap the `p` and `q` values.
            std::mem::swap(&mut p, &mut q);

            // The ordering of the reserves should also be swapped.
            reserves = Reserves {
                r1: reserves.r2,
                r2: reserves.r1,
            };
        }

        let phi = TradingFunction::new(canonical_tp, fee, p, q);
        Position {
            phi,
            nonce,
            state: State::Opened,
            reserves,
            close_on_fill: false,
        }
    }

    /// Get the ID of this position.
    pub fn id(&self) -> Id {
        let mut state = blake2b_simd::Params::default()
            .personal(b"penumbra_lp_id")
            .to_state();

        state.update(&self.nonce);
        state.update(&self.phi.pair.asset_1().to_bytes());
        state.update(&self.phi.pair.asset_2().to_bytes());
        state.update(&self.phi.component.fee.to_le_bytes());
        state.update(&self.phi.component.p.to_le_bytes());
        state.update(&self.phi.component.q.to_le_bytes());

        let hash = state.finalize();
        let mut bytes = [0; 32];
        bytes[0..32].copy_from_slice(&hash.as_bytes()[0..32]);
        Id(bytes)
    }

    pub fn check_stateless(&self) -> anyhow::Result<()> {
        if self.reserves.r1.value() > MAX_RESERVE_AMOUNT
            || self.reserves.r2.value() > MAX_RESERVE_AMOUNT
        {
            Err(anyhow::anyhow!(format!(
                "Reserve amounts are out-of-bounds (limit: {MAX_RESERVE_AMOUNT})"
            )))
        } else if self.reserves.r1.value() == 0 && self.reserves.r2.value() == 0 {
            Err(anyhow::anyhow!(
                "initial reserves must provision some amount of either asset",
            ))
        } else if self.phi.component.p == 0u64.into() || self.phi.component.q == 0u64.into() {
            Err(anyhow::anyhow!(
                "trading function coefficients must be nonzero"
            ))
        } else if self.phi.component.p.value() > MAX_RESERVE_AMOUNT
            || self.phi.component.q.value() > MAX_RESERVE_AMOUNT
        {
            Err(anyhow!("trading function coefficients are too large"))
        } else if self.phi.pair.asset_1() == self.phi.pair.asset_2() {
            Err(anyhow!("cyclical pairs aren't allowed"))
        } else if self.phi.component.fee > MAX_FEE_BPS {
            Err(anyhow!("fee cannot be greater than 50% (5000bps)"))
        } else {
            Ok(())
        }
    }

    /// Returns the amount of the given asset that is currently in the position's reserves.
    pub fn reserves_for(&self, asset: asset::Id) -> Option<Amount> {
        if asset == self.phi.pair.asset_1() {
            Some(self.reserves.r1)
        } else if asset == self.phi.pair.asset_2() {
            Some(self.reserves.r2)
        } else {
            None
        }
    }

    /// Returns the amount of reserves for asset 1.
    pub fn reserves_1(&self) -> Value {
        Value {
            amount: self.reserves.r1,
            asset_id: self.phi.pair.asset_1(),
        }
    }

    /// Returns the amount of reserves for asset 2.
    pub fn reserves_2(&self) -> Value {
        Value {
            amount: self.reserves.r2,
            asset_id: self.phi.pair.asset_2(),
        }
    }
}

/// A hash of a [`Position`].
#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone, Serialize, Deserialize)]
#[serde(try_from = "pb::PositionId", into = "pb::PositionId")]
pub struct Id(pub [u8; 32]);

impl std::fmt::Debug for Id {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.write_str(&bech32str::encode(
            &self.0,
            bech32str::lp_id::BECH32_PREFIX,
            bech32str::Bech32m,
        ))
    }
}

impl std::fmt::Display for Id {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.write_str(&bech32str::encode(
            &self.0,
            bech32str::lp_id::BECH32_PREFIX,
            bech32str::Bech32m,
        ))
    }
}

impl std::str::FromStr for Id {
    type Err = anyhow::Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let inner = bech32str::decode(s, bech32str::lp_id::BECH32_PREFIX, bech32str::Bech32m)?;
        pb::PositionId {
            inner,
            alt_bech32m: String::new(),
        }
        .try_into()
    }
}

/// The state of a position.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
#[serde(try_from = "pb::PositionState", into = "pb::PositionState")]
pub enum State {
    /// The position has been opened, is active, has reserves and accumulated
    /// fees, and can be traded against.
    Opened,
    /// The position has been closed, is inactive and can no longer be traded
    /// against, but still has reserves and accumulated fees.
    Closed,
    /// The final reserves and accumulated fees have been withdrawn, leaving an
    /// empty, inactive position awaiting (possible) retroactive rewards.
    Withdrawn {
        /// The sequence number, incrementing with each withdrawal.
        sequence: u64,
    },
}

impl std::fmt::Display for State {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            State::Opened => write!(f, "opened"),
            State::Closed => write!(f, "closed"),
            State::Withdrawn { sequence } => write!(f, "withdrawn_{}", sequence),
        }
    }
}

impl std::str::FromStr for State {
    type Err = anyhow::Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "opened" => Ok(State::Opened),
            "closed" => Ok(State::Closed),
            _ => {
                let mut parts = s.splitn(2, '_');
                if parts.next() == Some("withdrawn") {
                    let sequence = parts
                        .next()
                        .ok_or_else(|| anyhow::anyhow!("missing sequence number"))?
                        .parse()?;
                    Ok(State::Withdrawn { sequence })
                } else {
                    Err(anyhow::anyhow!("unknown position state"))
                }
            }
        }
    }
}

// ==== Protobuf impls

impl DomainType for Position {
    type Proto = pb::Position;
}

impl DomainType for Id {
    type Proto = pb::PositionId;
}

impl TryFrom<pb::PositionId> for Id {
    type Error = anyhow::Error;

    fn try_from(value: pb::PositionId) -> Result<Self, Self::Error> {
        match (value.inner.is_empty(), value.alt_bech32m.is_empty()) {
            (false, true) => Ok(Id(value
                .inner
                .as_slice()
                .try_into()
                .context("expected 32-byte id")?)),
            (true, false) => value.alt_bech32m.parse(),
            (false, false) => Err(anyhow::anyhow!(
                "AssetId proto has both inner and alt_bech32m fields set"
            )),
            (true, true) => Err(anyhow::anyhow!(
                "AssetId proto has neither inner nor alt_bech32m fields set"
            )),
        }
    }
}

impl From<Id> for pb::PositionId {
    fn from(value: Id) -> Self {
        Self {
            inner: value.0.to_vec(),
            // Never produce a proto encoding with the alt field set.
            alt_bech32m: String::new(),
        }
    }
}

impl DomainType for State {
    type Proto = pb::PositionState;
}

impl From<State> for pb::PositionState {
    fn from(v: State) -> Self {
        pb::PositionState {
            state: match v {
                State::Opened => pb::position_state::PositionStateEnum::Opened,
                State::Closed => pb::position_state::PositionStateEnum::Closed,
                State::Withdrawn { .. } => pb::position_state::PositionStateEnum::Withdrawn,
            } as i32,
            sequence: match v {
                State::Withdrawn { sequence } => sequence,
                // This will be omitted from serialization.
                _ => 0,
            },
        }
    }
}

impl TryFrom<pb::PositionState> for State {
    type Error = anyhow::Error;
    fn try_from(v: pb::PositionState) -> Result<Self, Self::Error> {
        let position_state =
            pb::position_state::PositionStateEnum::try_from(v.state).map_err(|e| {
                anyhow::anyhow!(
                    "invalid position state enum value: {}, error: {}",
                    v.state,
                    e
                )
            })?;

        match position_state {
            pb::position_state::PositionStateEnum::Opened => Ok(State::Opened),
            pb::position_state::PositionStateEnum::Closed => Ok(State::Closed),
            pb::position_state::PositionStateEnum::Withdrawn => Ok(State::Withdrawn {
                sequence: v.sequence,
            }),
            _ => Err(anyhow!("unknown position state")),
        }
    }
}

impl From<Position> for pb::Position {
    fn from(p: Position) -> Self {
        Self {
            state: Some(p.state.into()),
            reserves: Some(p.reserves.into()),
            phi: Some(p.phi.into()),
            nonce: p.nonce.to_vec(),
            close_on_fill: p.close_on_fill,
        }
    }
}

impl TryFrom<pb::Position> for Position {
    type Error = anyhow::Error;
    fn try_from(p: pb::Position) -> Result<Self, Self::Error> {
        Ok(Self {
            state: p
                .state
                .ok_or_else(|| anyhow::anyhow!("missing state in Position message"))?
                .try_into()?,
            reserves: p
                .reserves
                .ok_or_else(|| anyhow::anyhow!("missing reserves in Position message"))?
                .try_into()?,
            phi: p
                .phi
                .ok_or_else(|| anyhow::anyhow!("missing trading function"))?
                .try_into()?,
            nonce: p
                .nonce
                .as_slice()
                .try_into()
                .context("expected 32-byte nonce")?,
            close_on_fill: p.close_on_fill,
        })
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use ark_ff::Zero;
    use decaf377::Fq;
    use penumbra_asset::asset;
    use rand_core::OsRng;

    #[test]
    fn position_state_fromstr() {
        assert_eq!("opened".parse::<State>().unwrap(), State::Opened);
        assert_eq!("closed".parse::<State>().unwrap(), State::Closed);
        assert_eq!(
            "withdrawn_0".parse::<State>().unwrap(),
            State::Withdrawn { sequence: 0 }
        );
        assert_eq!(
            "withdrawn_1".parse::<State>().unwrap(),
            State::Withdrawn { sequence: 1 }
        );
        assert!("withdrawn".parse::<State>().is_err());
        assert!("withdrawn_".parse::<State>().is_err());
        assert!("withdrawn_1_".parse::<State>().is_err());
        assert!("withdrawn_1_2".parse::<State>().is_err());
        assert!("withdrawn_1_2_3".parse::<State>().is_err());
    }

    fn assert_position_similar(p1: Position, p2: Position) {
        assert_eq!(p1.reserves.r1, p2.reserves.r1);
        assert_eq!(p1.reserves.r2, p2.reserves.r2);
        assert_eq!(p1.phi.component.p, p2.phi.component.p);
        assert_eq!(p1.phi.component.q, p2.phi.component.q);
    }

    fn assert_position_not_similar(p1: Position, p2: Position) {
        let different_reserves = p1.reserves.r1 != p2.reserves.r1;
        let different_reserves = different_reserves || p1.reserves.r2 != p2.reserves.r2;
        let different_prices = p1.phi.component.p != p2.phi.component.p;
        let different_prices = different_prices || p1.phi.component.q != p2.phi.component.q;
        assert!(different_prices || different_reserves);
    }
    #[test]
    fn test_position() {
        let small_id = asset::Id(Fq::zero());
        let big_id = asset::Id(Fq::from(1u64));

        let pair_1 = DirectedTradingPair::new(small_id, big_id);
        let pair_2 = DirectedTradingPair::new(big_id, small_id);

        let price100i: (Amount, Amount) = (1u64.into(), 100u64.into());

        /*
           We create four positions per pair, where id(A) < id(B):
               + Case 1: for pair 1 (A -> B):
                   * position 1: provisions 150 units of asset 1 (A) at a price of 1/100.
                   * position 2: provisions 150 units of asset 2 (B) at a price of 100.
                   * position 3: provisions 150 units of asset 1 (A) at a price of 100.
                   * position 4: provisions 150 units of asset 2 (B) at a price of 1/100.
               + Case 2: for pair 2 (B -> A):
                   * position 1: provisions 150 units of asset 1 (B) at a price of 1/100.
                   * position 2: provisions 150 units fo asset 2 (A) at a price of 100.
                   * position 3: provisions 150 units of asset 1 (B) at a price of 100.
                   * position 4: provisions 150 units of asset 2 (A) at a price of 1/100.

           We want to check that:
               1. Case_1.p1 != Case_2.p2
               2. Case_1.p2 != Case_2.p1
               3. Case_1.p3 == Case_2.p2
               4. Case_1.p4 == Case_2.p1
               5. Case_2.p3 == Case_1.p2
               6. Case_2.p4 == Case_1.p1
        */

        let reserves_1 = Reserves {
            r1: 150u64.into(),
            r2: 0u64.into(),
        };

        let reserves_2 = reserves_1.flip();

        let a_position_1 = Position::new(
            OsRng,
            pair_1,
            0u32,
            price100i.0,
            price100i.1,
            reserves_1.clone(),
        );
        let a_position_2 = Position::new(
            OsRng,
            pair_1,
            0u32,
            price100i.0,
            price100i.1,
            reserves_2.clone(),
        );

        let a_position_3 = Position::new(
            OsRng,
            pair_1,
            0u32,
            price100i.1,
            price100i.0,
            reserves_1.clone(),
        );
        let a_position_4 = Position::new(
            OsRng,
            pair_1,
            0u32,
            price100i.1,
            price100i.0,
            reserves_2.clone(),
        );

        let b_position_1 = Position::new(
            OsRng,
            pair_2,
            0u32,
            price100i.0,
            price100i.1,
            reserves_1.clone(),
        );
        let b_position_2 = Position::new(
            OsRng,
            pair_2,
            0u32,
            price100i.0,
            price100i.1,
            reserves_2.clone(),
        );

        let b_position_3 = Position::new(
            OsRng,
            pair_2,
            0u32,
            price100i.1,
            price100i.0,
            reserves_1.clone(),
        );
        let b_position_4 = Position::new(
            OsRng,
            pair_2,
            0u32,
            price100i.1,
            price100i.0,
            reserves_2.clone(),
        );

        /*
                We want to check that:
                1. Case_1.p1 != Case_2.p2
                2. Case_1.p2 != Case_2.p1
                3. Case_1.p3 == Case_2.p2
                4. Case_1.p4 == Case_2.p1
                5. Case_2.p3 == Case_1.p2
                6. Case_2.p4 == Case_1.p1
        */
        assert_position_not_similar(a_position_1.clone(), b_position_2.clone());
        assert_position_not_similar(a_position_2.clone(), b_position_1.clone());
        assert_position_similar(a_position_3, b_position_2);
        assert_position_similar(a_position_4, b_position_1);
        assert_position_similar(b_position_3, a_position_2);
        assert_position_similar(b_position_4, a_position_1);
    }
}