penumbra_dex/component/router/route_and_fill.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
use std::sync::Arc;
use anyhow::{Context, Result};
use async_trait::async_trait;
use cnidarium::StateWrite;
use penumbra_asset::{asset, Value};
use penumbra_num::Amount;
use penumbra_sct::component::clock::EpochRead;
use tracing::instrument;
use crate::{
component::{
chandelier::Chandelier,
flow::SwapFlow,
router::{FillRoute, PathSearch, RoutingParams},
ExecutionCircuitBreaker, InternalDexWrite, PositionManager,
},
lp::position::MAX_RESERVE_AMOUNT,
BatchSwapOutputData, SwapExecution, TradingPair,
};
use super::fill_route::FillError;
/// Ties together the routing and filling logic, to process
/// a block's batch swap flows.
#[async_trait]
pub trait HandleBatchSwaps: StateWrite + Sized {
#[instrument(skip(self, trading_pair, batch_data, block_height, params))]
async fn handle_batch_swaps(
self: &mut Arc<Self>,
trading_pair: TradingPair,
batch_data: SwapFlow,
block_height: u64,
params: RoutingParams,
execution_budget: u32,
) -> Result<BatchSwapOutputData>
where
Self: 'static,
{
let (delta_1, delta_2) = (batch_data.0, batch_data.1);
tracing::debug!(?delta_1, ?delta_2, ?trading_pair, "decrypted batch swaps");
// We initialize a circuit breaker for this batch swap. This will limit the number of frontier
// executions up to the specified `execution_budget` parameter.
let execution_circuit_breaker = ExecutionCircuitBreaker::new(execution_budget);
let swap_execution_1_for_2 = self
.route_and_fill(
trading_pair.asset_1(),
trading_pair.asset_2(),
delta_1,
params.clone(),
execution_circuit_breaker.clone(),
)
.await?;
let swap_execution_2_for_1 = self
.route_and_fill(
trading_pair.asset_2(),
trading_pair.asset_1(),
delta_2,
params.clone(),
execution_circuit_breaker,
)
.await?;
let (lambda_2, unfilled_1) = match &swap_execution_1_for_2 {
Some(swap_execution) => (
swap_execution.output.amount,
delta_1 - swap_execution.input.amount,
),
None => (0u64.into(), delta_1),
};
let (lambda_1, unfilled_2) = match &swap_execution_2_for_1 {
Some(swap_execution) => (
swap_execution.output.amount,
delta_2 - swap_execution.input.amount,
),
None => (0u64.into(), delta_2),
};
let epoch = self.get_current_epoch().await.expect("epoch is set");
let output_data = BatchSwapOutputData {
height: block_height,
trading_pair,
delta_1,
delta_2,
lambda_1,
lambda_2,
unfilled_1,
unfilled_2,
sct_position_prefix: (
u16::try_from(epoch.index).expect("epoch index should be small enough"),
// The block index is determined by looking at how many blocks have elapsed since
// the start of the epoch.
u16::try_from(block_height - epoch.start_height)
.expect("block index should be small enough"),
0,
)
.into(),
};
tracing::debug!(
?output_data,
?swap_execution_1_for_2,
?swap_execution_2_for_1
);
// Update the candlestick tracking
if let Some(se) = swap_execution_1_for_2.clone() {
tracing::debug!("updating candlestick for 1=>2 swap");
Arc::get_mut(self)
.expect("expected state to have no other refs")
.record_swap_execution(&se)
.await;
}
if let Some(se) = &swap_execution_2_for_1 {
tracing::debug!("updating candlestick for 2=>1 swap");
Arc::get_mut(self)
.expect("expected state to have no other refs")
.record_swap_execution(se)
.await;
}
// Fetch the swap execution object that should have been modified during the routing and filling.
Arc::get_mut(self)
.expect("expected state to have no other refs")
.set_output_data(output_data, swap_execution_1_for_2, swap_execution_2_for_1)
.await?;
Ok(output_data)
}
}
impl<T: PositionManager> HandleBatchSwaps for T {}
/// Lower-level trait that ties together the routing and filling logic.
#[async_trait]
pub trait RouteAndFill: StateWrite + Sized {
#[instrument(skip(self, asset_1, asset_2, input, params, execution_circuit_breaker))]
async fn route_and_fill(
self: &mut Arc<Self>,
asset_1: asset::Id,
asset_2: asset::Id,
input: Amount,
params: RoutingParams,
mut execution_circuit_breaker: ExecutionCircuitBreaker,
) -> Result<Option<SwapExecution>>
where
Self: 'static,
{
tracing::debug!(?input, ?asset_1, ?asset_2, "starting route_and_fill");
if input == Amount::zero() {
return Ok(None);
}
// Unfilled output of asset 1
let mut total_unfilled_1 = input;
// Output of asset 2
let mut total_output_2 = 0u64.into();
// An ordered list of execution traces that were used to fill the trade.
let mut traces: Vec<Vec<Value>> = Vec::new();
let max_delta_1: Amount = MAX_RESERVE_AMOUNT.into();
// Termination conditions:
// 1. We have no more `delta_1` remaining
// 2. A path can no longer be found
// 3. We have reached the `RoutingParams` specified price limit
// 4. The execution circuit breaker has been triggered based on the number of path searches and executions
loop {
// Check if we have exceeded the execution circuit breaker limits.
if execution_circuit_breaker.exceeded_limits() {
tracing::debug!("execution circuit breaker triggered, exiting route_and_fill");
break;
} else {
// This should be done ahead of doing any path search or execution, so that we never
// have to reason about the specific control flow of our batch swap logic.
execution_circuit_breaker.increment();
}
// Find the best route between the two assets in the trading pair.
let (path, spill_price) = self
.path_search(asset_1, asset_2, params.clone())
.await
.context("error finding best path")?;
let Some(path) = path else {
tracing::debug!("no path found, exiting route_and_fill");
break;
};
if path.is_empty() {
tracing::debug!("empty path found, exiting route_and_fill");
break;
}
// We split off the entire batch swap into smaller chunks to avoid causing
// a series of overflow in the DEX.
let delta_1 = Value {
amount: total_unfilled_1.min(max_delta_1),
asset_id: asset_1,
};
tracing::debug!(?path, delta_1 = ?delta_1.amount, "found path, filling up to spill price");
let execution = Arc::get_mut(self)
.expect("expected state to have no other refs")
.fill_route(delta_1, &path, spill_price)
.await;
let execution = match execution {
Ok(execution) => execution,
Err(FillError::ExecutionOverflow(position_id)) => {
// We have encountered an overflow during the execution of the route.
// To route around this, we will close the position and try to route and fill again.
tracing::debug!(culprit = ?position_id, "overflow detected during routing execution");
Arc::get_mut(self)
.expect("expected state to have no other refs")
.close_position_by_id(&position_id)
.await
.expect("the position still exists");
continue;
}
Err(e) => {
// We have encountered an error during the execution of the route,
// there are no clear ways to route around this, so we propagate the error.
// `fill_route` is transactional and will have rolled back the state.
anyhow::bail!("error filling route: {:?}", e);
}
};
// Immediately track the execution in the state.
(total_output_2, total_unfilled_1) = {
let lambda_2 = execution.output;
let unfilled_1 = Value {
amount: total_unfilled_1
.checked_sub(&execution.input.amount)
.expect("unable to subtract unfilled input from total input"),
asset_id: asset_1,
};
tracing::debug!(input = ?delta_1.amount, output = ?lambda_2.amount, unfilled = ?unfilled_1.amount, "filled along best path");
assert_eq!(lambda_2.asset_id, asset_2);
assert_eq!(unfilled_1.asset_id, asset_1);
// Append the traces from this execution to the outer traces.
traces.append(&mut execution.traces.clone());
(
total_output_2 + lambda_2.amount,
total_unfilled_1 - delta_1.amount + unfilled_1.amount,
)
};
if total_unfilled_1.value() == 0 {
tracing::debug!("filled all input, exiting route_and_fill");
break;
}
// Ensure that we've actually executed, or else bail out.
let Some(accurate_max_price) = execution.max_price() else {
tracing::debug!("no traces in execution, exiting route_and_fill");
break;
};
// Check that the execution price is below the price limit, if one is set.
if let Some(price_limit) = params.price_limit {
if accurate_max_price >= price_limit {
tracing::debug!(
?accurate_max_price,
?price_limit,
"execution price above price limit, exiting route_and_fill"
);
break;
}
}
}
// If we didn't execute against any position at all, there
// are no execution records to return.
if traces.is_empty() {
return Ok(None);
} else {
Ok(Some(SwapExecution {
traces,
input: Value {
asset_id: asset_1,
amount: input - total_unfilled_1,
},
output: Value {
asset_id: asset_2,
amount: total_output_2,
},
}))
}
}
}
impl<T: HandleBatchSwaps> RouteAndFill for T {}