penumbra_asset/
balance.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
use ark_r1cs_std::prelude::*;
use ark_r1cs_std::uint8::UInt8;
use ark_relations::r1cs::SynthesisError;
use penumbra_num::{Amount, AmountVar};
use serde::{Deserialize, Serialize};
use serde_with::serde_as;
use std::{
    collections::{btree_map, BTreeMap},
    fmt::{self, Debug, Formatter},
    iter::FusedIterator,
    mem,
    num::NonZeroU128,
    ops::{Add, AddAssign, Deref, Neg, Sub, SubAssign},
};

use crate::{
    asset::{AssetIdVar, Id},
    value::ValueVar,
    Value,
};

pub mod commitment;
pub use commitment::Commitment;

mod imbalance;
mod iter;
use commitment::VALUE_BLINDING_GENERATOR;
use decaf377::{r1cs::ElementVar, Fq, Fr};
use imbalance::Imbalance;

use self::commitment::BalanceCommitmentVar;

/// A `Balance` is a "vector of [`Value`]s", where some values may be required, while others may be
/// provided. For a transaction to be valid, its balance must be zero.
#[serde_as]
#[derive(Clone, Eq, Default, Serialize, Deserialize)]
pub struct Balance {
    negated: bool,
    #[serde_as(as = "Vec<(_, _)>")]
    balance: BTreeMap<Id, Imbalance<NonZeroU128>>,
}

impl Debug for Balance {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("Balance")
            .field("required", &self.required().collect::<Vec<_>>())
            .field("provided", &self.provided().collect::<Vec<_>>())
            .finish()
    }
}

impl Balance {
    /// Make a new, zero balance.
    pub fn zero() -> Self {
        Self::default()
    }

    /// Check if this balance is zero.
    pub fn is_zero(&self) -> bool {
        self.balance.is_empty()
    }

    /// Find out how many distinct assets are represented in this balance.
    pub fn dimension(&self) -> usize {
        self.balance.len()
    }

    /// Iterate over all the requirements of the balance, as [`Value`]s.
    pub fn required(
        &self,
    ) -> impl Iterator<Item = Value> + DoubleEndedIterator + FusedIterator + '_ {
        self.iter().filter_map(Imbalance::required)
    }

    // Iterate over all the provisions of the balance, as [`Value`]s.
    pub fn provided(
        &self,
    ) -> impl Iterator<Item = Value> + DoubleEndedIterator + FusedIterator + '_ {
        self.iter().filter_map(Imbalance::provided)
    }

    /// Commit to a [`Balance`] using a provided blinding factor.
    ///
    /// This is like a vectorized [`Value::commit`].
    #[allow(non_snake_case)]
    pub fn commit(&self, blinding_factor: Fr) -> Commitment {
        // Accumulate all the elements for the values
        let mut commitment = decaf377::Element::default();
        for imbalance in self.iter() {
            let (sign, value) = imbalance.into_inner();
            let G_v = value.asset_id.value_generator();

            // Depending on the sign, either subtract or add
            match sign {
                imbalance::Sign::Required => {
                    commitment -= G_v * Fr::from(value.amount);
                }
                imbalance::Sign::Provided => {
                    commitment += G_v * Fr::from(value.amount);
                }
            }
        }

        // Add the blinding factor only once, after the accumulation
        commitment += blinding_factor * VALUE_BLINDING_GENERATOR.deref();
        Commitment(commitment)
    }
}

impl PartialEq for Balance {
    // Eq is implemented this way because there are two different representations for a `Balance`,
    // to allow fast negation, so we check elements of the iterator against each other, because the
    // iterator returns the values in canonical imbalance representation, in order
    fn eq(&self, other: &Self) -> bool {
        if self.dimension() != other.dimension() {
            return false;
        }

        for (i, j) in self.iter().zip(other.iter()) {
            if i != j {
                return false;
            }
        }

        true
    }
}

impl Neg for Balance {
    type Output = Self;

    fn neg(self) -> Self {
        Self {
            negated: !self.negated,
            balance: self.balance,
        }
    }
}

impl Add for Balance {
    type Output = Self;

    // This is a tricky function, because the representation of a `Balance` has a `negated` flag
    // which inverts the meaning of the stored entry (this is so that you can negate balances in
    // constant time, which makes subtraction fast to implement). As a consequence, however, we have
    // to take care that when we access the raw storage, we negate the imbalance we retrieve if and
    // only if we are in negated mode, and when we write back a value, we negate it again on writing
    // it back if we are in negated mode.
    fn add(mut self, mut other: Self) -> Self {
        // Always iterate through the smaller of the two
        if other.dimension() > self.dimension() {
            mem::swap(&mut self, &mut other);
        }

        for imbalance in other.into_iter() {
            // Convert back into an asset id key and imbalance value
            let (sign, Value { asset_id, amount }) = imbalance.into_inner();
            let (asset_id, mut imbalance) = if let Some(amount) = NonZeroU128::new(amount.into()) {
                (asset_id, sign.imbalance(amount))
            } else {
                unreachable!("values stored in balance are always nonzero")
            };

            match self.balance.entry(asset_id) {
                btree_map::Entry::Vacant(entry) => {
                    // Important: if we are currently negated, we have to negate the imbalance
                    // before we store it!
                    if self.negated {
                        imbalance = -imbalance;
                    }
                    entry.insert(imbalance);
                }
                btree_map::Entry::Occupied(mut entry) => {
                    // Important: if we are currently negated, we have to negate the entry we just
                    // pulled out!
                    let mut existing_imbalance = *entry.get();
                    if self.negated {
                        existing_imbalance = -existing_imbalance;
                    }

                    if let Some(mut new_imbalance) = existing_imbalance + imbalance {
                        // If there's still an imbalance, update the map entry, making sure to
                        // negate the new imbalance if we are negated
                        if self.negated {
                            new_imbalance = -new_imbalance;
                        }
                        entry.insert(new_imbalance);
                    } else {
                        // If adding this imbalance zeroed out the balance for this asset, remove
                        // the entry
                        entry.remove();
                    }
                }
            }
        }

        self
    }
}

impl Add<Value> for Balance {
    type Output = Balance;

    fn add(self, value: Value) -> Self::Output {
        self + Balance::from(value)
    }
}

impl AddAssign for Balance {
    fn add_assign(&mut self, other: Self) {
        *self = mem::take(self) + other;
    }
}

impl AddAssign<Value> for Balance {
    fn add_assign(&mut self, other: Value) {
        *self += Balance::from(other);
    }
}

impl Sub for Balance {
    type Output = Self;

    fn sub(self, other: Self) -> Self {
        self + -other
    }
}

impl Sub<Value> for Balance {
    type Output = Balance;

    fn sub(self, value: Value) -> Self::Output {
        self - Balance::from(value)
    }
}

impl SubAssign for Balance {
    fn sub_assign(&mut self, other: Self) {
        *self = mem::take(self) - other;
    }
}

impl SubAssign<Value> for Balance {
    fn sub_assign(&mut self, other: Value) {
        *self -= Balance::from(other);
    }
}

impl From<Value> for Balance {
    fn from(Value { amount, asset_id }: Value) -> Self {
        let mut balance = BTreeMap::new();
        if let Some(amount) = NonZeroU128::new(amount.into()) {
            balance.insert(asset_id, Imbalance::Provided(amount));
        }
        Balance {
            negated: false,
            balance,
        }
    }
}

/// Represents a balance in a rank 1 constraint system.
///
/// A balance consists of a number of assets (represented
/// by their asset ID), the amount of each asset, as
/// well as a boolean var that represents their contribution to the
/// transaction's balance.
///
/// True values represent assets that are being provided (positive sign).
/// False values represent assets that are required (negative sign).
#[derive(Clone)]
pub struct BalanceVar {
    pub inner: Vec<(AssetIdVar, (Boolean<Fq>, AmountVar))>,
}

impl AllocVar<Balance, Fq> for BalanceVar {
    fn new_variable<T: std::borrow::Borrow<Balance>>(
        cs: impl Into<ark_relations::r1cs::Namespace<Fq>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: ark_r1cs_std::prelude::AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        let inner1 = f()?;
        let inner = inner1.borrow();
        match mode {
            AllocationMode::Constant => unimplemented!(),
            AllocationMode::Input => unimplemented!(),
            AllocationMode::Witness => {
                if !inner.negated {
                    unimplemented!();
                }

                let mut inner_balance_vars = Vec::new();
                for (asset_id, imbalance) in inner.balance.iter() {
                    let (sign, amount) = imbalance.into_inner();

                    let asset_id_var = AssetIdVar::new_witness(cs.clone(), || Ok(asset_id))?;
                    let amount_var = AmountVar::new_witness(cs.clone(), || {
                        Ok(Amount::from(u128::from(amount)))
                    })?;

                    let boolean_var = match sign {
                        imbalance::Sign::Required => Boolean::constant(false),
                        imbalance::Sign::Provided => Boolean::constant(true),
                    };

                    inner_balance_vars.push((asset_id_var, (boolean_var, amount_var)));
                }

                Ok(BalanceVar {
                    inner: inner_balance_vars,
                })
            }
        }
    }
}

impl From<ValueVar> for BalanceVar {
    fn from(ValueVar { amount, asset_id }: ValueVar) -> Self {
        let mut balance_vec = Vec::new();
        let sign = Boolean::constant(true);
        balance_vec.push((asset_id, (sign, amount)));

        BalanceVar { inner: balance_vec }
    }
}

impl BalanceVar {
    /// Commit to a [`BalanceVar`] using a provided blinding factor.
    ///
    /// This is like a vectorized [`ValueVar::commit`].
    #[allow(non_snake_case)]
    #[allow(clippy::assign_op_pattern)]
    pub fn commit(
        &self,
        blinding_factor: Vec<UInt8<Fq>>,
    ) -> Result<BalanceCommitmentVar, SynthesisError> {
        // Access constraint system ref from one of the balance contributions
        let cs = self
            .inner
            .get(0)
            .expect("at least one contribution to balance")
            .0
            .asset_id
            .cs();

        // Begin by adding the blinding factor only once
        let value_blinding_generator = ElementVar::new_constant(cs, *VALUE_BLINDING_GENERATOR)?;
        let mut commitment =
            value_blinding_generator.scalar_mul_le(blinding_factor.to_bits_le()?.iter())?;

        // Accumulate all the elements for the values
        for (asset_id, (sign, amount)) in self.inner.iter() {
            let G_v = asset_id.value_generator()?;
            // Access the inner `FqVar` on `AmountVar` for scalar mul
            let value_amount = amount.amount.clone();

            // We scalar mul first with value (small), _then_ negate [v]G_v if needed
            let vG = G_v.scalar_mul_le(value_amount.to_bits_le()?.iter())?;
            let minus_vG = vG.negate()?;
            let to_add = ElementVar::conditionally_select(sign, &vG, &minus_vG)?;
            // It seems like the AddAssign impl here doesn't match the Add impl
            commitment = commitment + to_add;
        }
        Ok(BalanceCommitmentVar { inner: commitment })
    }

    /// Create a balance from a positive [`ValueVar`].
    pub fn from_positive_value_var(value: ValueVar) -> Self {
        value.into()
    }

    /// Create a balance from a negated [`ValueVar`].
    pub fn from_negative_value_var(value: ValueVar) -> Self {
        let mut balance_vec = Vec::new();
        let sign = Boolean::constant(false);
        balance_vec.push((value.asset_id, (sign, value.amount)));

        BalanceVar { inner: balance_vec }
    }
}

impl std::ops::Add for BalanceVar {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        let mut balance_vec = self.inner;
        for (asset_id, (sign, amount)) in other.inner {
            balance_vec.push((asset_id, (sign, amount)));
        }
        BalanceVar { inner: balance_vec }
    }
}

#[cfg(test)]
mod test {
    use crate::{asset::Metadata, STAKING_TOKEN_ASSET_ID};
    use ark_ff::Zero;
    use decaf377::Fr;
    use once_cell::sync::Lazy;
    use proptest::prelude::*;

    use super::*;

    #[test]
    fn provide_then_require() {
        let mut balance = Balance::zero();
        balance += Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        balance -= Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        assert!(balance.is_zero());
    }

    #[test]
    fn require_then_provide() {
        let mut balance = Balance::zero();
        balance -= Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        balance += Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        assert!(balance.is_zero());
    }

    #[test]
    fn provide_then_require_negative_zero() {
        let mut balance = -Balance::zero();
        balance += Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        balance -= Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        assert!(balance.is_zero());
    }

    #[test]
    fn require_then_provide_negative_zero() {
        let mut balance = -Balance::zero();
        balance -= Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        balance += Value {
            amount: 1u64.into(),
            asset_id: *STAKING_TOKEN_ASSET_ID,
        };
        assert!(balance.is_zero());
    }

    #[derive(Debug, Clone)]
    enum Expression {
        Value(Value),
        Neg(Box<Expression>),
        Add(Box<Expression>, Box<Expression>),
        Sub(Box<Expression>, Box<Expression>),
    }

    impl Expression {
        fn transparent_balance_commitment(&self) -> Commitment {
            match self {
                Expression::Value(value) => value.commit(Fr::zero()),
                Expression::Neg(expr) => -expr.transparent_balance_commitment(),
                Expression::Add(lhs, rhs) => {
                    lhs.transparent_balance_commitment() + rhs.transparent_balance_commitment()
                }
                Expression::Sub(lhs, rhs) => {
                    lhs.transparent_balance_commitment() - rhs.transparent_balance_commitment()
                }
            }
        }

        fn balance(&self) -> Balance {
            match self {
                Expression::Value(value) => Balance::from(*value),
                Expression::Neg(expr) => -expr.balance(),
                Expression::Add(lhs, rhs) => lhs.balance() + rhs.balance(),
                Expression::Sub(lhs, rhs) => lhs.balance() - rhs.balance(),
            }
        }
    }

    // Two sample denom/asset id pairs, for testing
    static DENOM_1: Lazy<Metadata> = Lazy::new(|| {
        crate::asset::Cache::with_known_assets()
            .get_unit("cube")
            .unwrap()
            .base()
    });
    static ASSET_ID_1: Lazy<Id> = Lazy::new(|| DENOM_1.id());

    static DENOM_2: Lazy<Metadata> = Lazy::new(|| {
        crate::asset::Cache::with_known_assets()
            .get_unit("nala")
            .unwrap()
            .base()
    });
    static ASSET_ID_2: Lazy<Id> = Lazy::new(|| DENOM_2.id());

    #[allow(clippy::arc_with_non_send_sync)]
    fn gen_expression() -> impl proptest::strategy::Strategy<Value = Expression> {
        (
            (0u64..u32::MAX as u64), // limit amounts so that there is no overflow
            prop_oneof![Just(*ASSET_ID_1), Just(*ASSET_ID_2)],
        )
            .prop_map(|(amount, asset_id)| {
                Expression::Value(Value {
                    amount: amount.into(),
                    asset_id,
                })
            })
            .prop_recursive(8, 256, 2, |inner| {
                prop_oneof![
                    inner
                        .clone()
                        .prop_map(|beneath| Expression::Neg(Box::new(beneath))),
                    (inner.clone(), inner.clone()).prop_map(|(left, right)| {
                        Expression::Add(Box::new(left), Box::new(right))
                    }),
                    (inner.clone(), inner).prop_map(|(left, right)| {
                        Expression::Sub(Box::new(left), Box::new(right))
                    }),
                ]
            })
    }

    proptest! {
        /// Checks to make sure that any possible expression made of negation, addition, and
        /// subtraction is a homomorphism with regard to the resultant balance commitment, which
        /// should provide assurance that these operations are implemented correctly on the balance
        /// type itself.
        #[test]
        fn all_expressions_correct_commitment(
            expr in gen_expression()
        ) {
            // Compute the balance for the expression
            let balance = expr.balance();

            // Compute the transparent commitment for the expression
            let commitment = expr.transparent_balance_commitment();

            // Compute the transparent commitment for the balance
            let mut balance_commitment = Commitment::default();
            for required in balance.required() {
                balance_commitment = balance_commitment - required.commit(Fr::zero());
            }
            for provided in balance.provided() {
                balance_commitment = balance_commitment + provided.commit(Fr::zero());
            }

            assert_eq!(commitment, balance_commitment);
        }
    }
}