jmt/tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
use crate::storage::Node::Leaf;
use alloc::{collections::BTreeMap, vec::Vec};
use alloc::{format, vec};
use anyhow::{bail, ensure, format_err, Context, Result};
use core::marker::PhantomData;
use core::{cmp::Ordering, convert::TryInto};
#[cfg(not(feature = "std"))]
use hashbrown::HashMap;
#[cfg(feature = "std")]
use std::collections::HashMap;
use crate::proof::definition::UpdateMerkleProof;
use crate::proof::{SparseMerkleLeafNode, SparseMerkleNode};
use crate::{
node_type::{Child, Children, InternalNode, LeafNode, Node, NodeKey, NodeType},
storage::{TreeReader, TreeUpdateBatch},
tree_cache::TreeCache,
types::{
nibble::{
nibble_path::{skip_common_prefix, NibbleIterator, NibblePath},
Nibble, NibbleRangeIterator, ROOT_NIBBLE_HEIGHT,
},
proof::{SparseMerkleProof, SparseMerkleRangeProof},
Version,
},
Bytes32Ext, KeyHash, MissingRootError, OwnedValue, RootHash, SimpleHasher, ValueHash,
};
/// A [`JellyfishMerkleTree`] instantiated using the `sha2::Sha256` hasher.
/// This is a sensible default choice for most applications.
#[cfg(any(test, feature = "sha2"))]
pub type Sha256Jmt<'a, R> = JellyfishMerkleTree<'a, R, sha2::Sha256>;
/// A Jellyfish Merkle tree data structure, parameterized by a [`TreeReader`] `R`
/// and a [`SimpleHasher`] `H`. See [`crate`] for description.
pub struct JellyfishMerkleTree<'a, R, H: SimpleHasher> {
reader: &'a R,
_phantom_hasher: PhantomData<H>,
}
#[cfg(feature = "ics23")]
pub mod ics23_impl;
impl<'a, R, H> JellyfishMerkleTree<'a, R, H>
where
R: 'a + TreeReader,
H: SimpleHasher,
{
/// Creates a `JellyfishMerkleTree` backed by the given [`TreeReader`].
pub fn new(reader: &'a R) -> Self {
Self {
reader,
_phantom_hasher: Default::default(),
}
}
/// Get the node hash from the cache if exists, otherwise compute it.
fn get_hash(
node_key: &NodeKey,
node: &Node,
hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
) -> [u8; 32] {
if let Some(cache) = hash_cache {
match cache.get(node_key.nibble_path()) {
Some(hash) => *hash,
None => unreachable!("{:?} can not be found in hash cache", node_key),
}
} else {
node.hash::<H>()
}
}
/// The batch version of `put_value_sets`.
pub fn batch_put_value_sets(
&self,
value_sets: Vec<Vec<(KeyHash, OwnedValue)>>,
node_hashes: Option<Vec<&HashMap<NibblePath, [u8; 32]>>>,
first_version: Version,
) -> Result<(Vec<RootHash>, TreeUpdateBatch)> {
let mut tree_cache = TreeCache::new(self.reader, first_version)?;
let hash_sets: Vec<_> = match node_hashes {
Some(hashes) => hashes.into_iter().map(Some).collect(),
None => (0..value_sets.len()).map(|_| None).collect(),
};
for (idx, (value_set, hash_set)) in
itertools::zip_eq(value_sets.into_iter(), hash_sets.into_iter()).enumerate()
{
assert!(
!value_set.is_empty(),
"Transactions that output empty write set should not be included.",
);
let version = first_version + idx as u64;
let deduped_and_sorted_kvs = value_set
.into_iter()
.collect::<BTreeMap<_, _>>()
.into_iter()
.map(|(key, value)| {
let value_hash = ValueHash::with::<H>(value.as_slice());
tree_cache.put_value(version, key, Some(value));
(key, value_hash)
})
.collect::<Vec<_>>();
let root_node_key = tree_cache.get_root_node_key().clone();
let (new_root_node_key, _) = self.batch_insert_at(
root_node_key,
version,
deduped_and_sorted_kvs.as_slice(),
0,
&hash_set,
&mut tree_cache,
)?;
tree_cache.set_root_node_key(new_root_node_key);
// Freezes the current cache to make all contents in the current cache immutable.
tree_cache.freeze::<H>()?;
}
Ok(tree_cache.into())
}
fn batch_insert_at(
&self,
mut node_key: NodeKey,
version: Version,
kvs: &[(KeyHash, ValueHash)],
depth: usize,
hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
tree_cache: &mut TreeCache<R>,
) -> Result<(NodeKey, Node)> {
assert!(!kvs.is_empty());
let node = tree_cache.get_node(&node_key)?;
Ok(match node {
Node::Internal(internal_node) => {
// We always delete the existing internal node here because it will not be referenced anyway
// since this version.
tree_cache.delete_node(&node_key, false /* is_leaf */);
// Reuse the current `InternalNode` in memory to create a new internal node.
let mut children: Children = internal_node.clone().into();
// Traverse all the path touched by `kvs` from this internal node.
for (left, right) in NibbleRangeIterator::new(kvs, depth) {
// Traverse downwards from this internal node recursively by splitting the updates into
// each child index
let child_index = kvs[left].0 .0.get_nibble(depth);
let (new_child_node_key, new_child_node) =
match internal_node.child(child_index) {
Some(child) => {
let child_node_key =
node_key.gen_child_node_key(child.version, child_index);
self.batch_insert_at(
child_node_key,
version,
&kvs[left..=right],
depth + 1,
hash_cache,
tree_cache,
)?
}
None => {
let new_child_node_key =
node_key.gen_child_node_key(version, child_index);
self.batch_create_subtree(
new_child_node_key,
version,
&kvs[left..=right],
depth + 1,
hash_cache,
tree_cache,
)?
}
};
children.insert(
child_index,
Child::new(
Self::get_hash(&new_child_node_key, &new_child_node, hash_cache),
version,
new_child_node.node_type(),
),
);
}
let new_internal_node = InternalNode::new(children);
node_key.set_version(version);
// Cache this new internal node.
tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
(node_key, new_internal_node.into())
}
Node::Leaf(leaf_node) => {
// We are on a leaf node but trying to insert another node, so we may diverge.
// We always delete the existing leaf node here because it will not be referenced anyway
// since this version.
tree_cache.delete_node(&node_key, true /* is_leaf */);
node_key.set_version(version);
self.batch_create_subtree_with_existing_leaf(
node_key, version, leaf_node, kvs, depth, hash_cache, tree_cache,
)?
}
Node::Null => {
if !node_key.nibble_path().is_empty() {
bail!(
"Null node exists for non-root node with node_key {:?}",
node_key
);
}
if node_key.version() == version {
tree_cache.delete_node(&node_key, false /* is_leaf */);
}
self.batch_create_subtree(
NodeKey::new_empty_path(version),
version,
kvs,
depth,
hash_cache,
tree_cache,
)?
}
})
}
#[allow(clippy::too_many_arguments)]
fn batch_create_subtree_with_existing_leaf(
&self,
node_key: NodeKey,
version: Version,
existing_leaf_node: LeafNode,
kvs: &[(KeyHash, ValueHash)],
depth: usize,
hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
tree_cache: &mut TreeCache<R>,
) -> Result<(NodeKey, Node)> {
let existing_leaf_key = existing_leaf_node.key_hash();
if kvs.len() == 1 && kvs[0].0 == existing_leaf_key {
let new_leaf_node = Node::Leaf(LeafNode::new(existing_leaf_key, kvs[0].1));
tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
Ok((node_key, new_leaf_node))
} else {
let existing_leaf_bucket = existing_leaf_key.0.get_nibble(depth);
let mut isolated_existing_leaf = true;
let mut children = Children::new();
for (left, right) in NibbleRangeIterator::new(kvs, depth) {
let child_index = kvs[left].0 .0.get_nibble(depth);
let child_node_key = node_key.gen_child_node_key(version, child_index);
let (new_child_node_key, new_child_node) = if existing_leaf_bucket == child_index {
isolated_existing_leaf = false;
self.batch_create_subtree_with_existing_leaf(
child_node_key,
version,
existing_leaf_node.clone(),
&kvs[left..=right],
depth + 1,
hash_cache,
tree_cache,
)?
} else {
self.batch_create_subtree(
child_node_key,
version,
&kvs[left..=right],
depth + 1,
hash_cache,
tree_cache,
)?
};
children.insert(
child_index,
Child::new(
Self::get_hash(&new_child_node_key, &new_child_node, hash_cache),
version,
new_child_node.node_type(),
),
);
}
if isolated_existing_leaf {
let existing_leaf_node_key =
node_key.gen_child_node_key(version, existing_leaf_bucket);
children.insert(
existing_leaf_bucket,
Child::new(existing_leaf_node.hash::<H>(), version, NodeType::Leaf),
);
tree_cache.put_node(existing_leaf_node_key, existing_leaf_node.into())?;
}
let new_internal_node = InternalNode::new(children);
tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
Ok((node_key, new_internal_node.into()))
}
}
fn batch_create_subtree(
&self,
node_key: NodeKey,
version: Version,
kvs: &[(KeyHash, ValueHash)],
depth: usize,
hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
tree_cache: &mut TreeCache<R>,
) -> Result<(NodeKey, Node)> {
if kvs.len() == 1 {
let new_leaf_node = Node::Leaf(LeafNode::new(kvs[0].0, kvs[0].1));
tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
Ok((node_key, new_leaf_node))
} else {
let mut children = Children::new();
for (left, right) in NibbleRangeIterator::new(kvs, depth) {
let child_index = kvs[left].0 .0.get_nibble(depth);
let child_node_key = node_key.gen_child_node_key(version, child_index);
let (new_child_node_key, new_child_node) = self.batch_create_subtree(
child_node_key,
version,
&kvs[left..=right],
depth + 1,
hash_cache,
tree_cache,
)?;
children.insert(
child_index,
Child::new(
Self::get_hash(&new_child_node_key, &new_child_node, hash_cache),
version,
new_child_node.node_type(),
),
);
}
let new_internal_node = InternalNode::new(children);
tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
Ok((node_key, new_internal_node.into()))
}
}
/// This is a convenient function that calls
/// [`put_value_sets`](struct.JellyfishMerkleTree.html#method.put_value_sets) with a single
/// `keyed_value_set`.
pub fn put_value_set(
&self,
value_set: impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>,
version: Version,
) -> Result<(RootHash, TreeUpdateBatch)> {
let (root_hashes, tree_update_batch) = self.put_value_sets(vec![value_set], version)?;
assert_eq!(
root_hashes.len(),
1,
"root_hashes must consist of a single value.",
);
Ok((root_hashes[0], tree_update_batch))
}
/// This is a convenient function that calls
/// [`put_value_sets_with_proof`](struct.JellyfishMerkleTree.html#method.put_value_sets) with a single
/// `keyed_value_set`.
pub fn put_value_set_with_proof(
&self,
value_set: impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>,
version: Version,
) -> Result<(RootHash, UpdateMerkleProof<H>, TreeUpdateBatch)> {
let (mut hash_and_proof, batch_update) =
self.put_value_sets_with_proof(vec![value_set], version)?;
assert_eq!(
hash_and_proof.len(),
1,
"root_hashes must consist of a single value.",
);
let (hash, proof) = hash_and_proof.pop().unwrap();
Ok((hash, proof, batch_update))
}
/// Returns the new nodes and values in a batch after applying `value_set`. For
/// example, if after transaction `T_i` the committed state of tree in the persistent storage
/// looks like the following structure:
///
/// ```text
/// S_i
/// / \
/// . .
/// . .
/// / \
/// o x
/// / \
/// A B
/// storage (disk)
/// ```
///
/// where `A` and `B` denote the states of two adjacent accounts, and `x` is a sibling subtree
/// of the path from root to A and B in the tree. Then a `value_set` produced by the next
/// transaction `T_{i+1}` modifies other accounts `C` and `D` exist in the subtree under `x`, a
/// new partial tree will be constructed in memory and the structure will be:
///
/// ```text
/// S_i | S_{i+1}
/// / \ | / \
/// . . | . .
/// . . | . .
/// / \ | / \
/// / x | / x'
/// o<-------------+- / \
/// / \ | C D
/// A B |
/// storage (disk) | cache (memory)
/// ```
///
/// With this design, we are able to query the global state in persistent storage and
/// generate the proposed tree delta based on a specific root hash and `value_set`. For
/// example, if we want to execute another transaction `T_{i+1}'`, we can use the tree `S_i` in
/// storage and apply the `value_set` of transaction `T_{i+1}`. Then if the storage commits
/// the returned batch, the state `S_{i+1}` is ready to be read from the tree by calling
/// [`get_with_proof`](struct.JellyfishMerkleTree.html#method.get_with_proof). Anything inside
/// the batch is not reachable from public interfaces before being committed.
pub fn put_value_sets(
&self,
value_sets: impl IntoIterator<Item = impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>>,
first_version: Version,
) -> Result<(Vec<RootHash>, TreeUpdateBatch)> {
let mut tree_cache = TreeCache::new(self.reader, first_version)?;
for (idx, value_set) in value_sets.into_iter().enumerate() {
let version = first_version + idx as u64;
for (i, (key, value)) in value_set.into_iter().enumerate() {
let action = if value.is_some() { "insert" } else { "delete" };
let value_hash = value.as_ref().map(|v| ValueHash::with::<H>(v));
tree_cache.put_value(version, key, value);
self.put(key, value_hash, version, &mut tree_cache, false)
.with_context(|| {
format!(
"failed to {} key {} for version {}, key = {:?}",
action, i, version, key
)
})?;
}
// Freezes the current cache to make all contents in the current cache immutable.
tree_cache.freeze::<H>()?;
}
Ok(tree_cache.into())
}
#[cfg(feature = "migration")]
/// Append value sets to the latest version of the tree, without incrementing its version.
pub fn append_value_set(
&self,
value_set: impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>,
latest_version: Version,
) -> Result<(RootHash, TreeUpdateBatch)> {
let mut tree_cache = TreeCache::new_overwrite(self.reader, latest_version)?;
for (i, (key, value)) in value_set.into_iter().enumerate() {
let action = if value.is_some() { "insert" } else { "delete" };
let value_hash = value.as_ref().map(|v| ValueHash::with::<H>(v));
tree_cache.put_value(latest_version, key, value);
self.put(key, value_hash, latest_version, &mut tree_cache, false)
.with_context(|| {
format!(
"failed to {} key {} for version {}, key = {:?}",
action, i, latest_version, key
)
})?;
}
// Freezes the current cache to make all contents in the current cache immutable.
tree_cache.freeze::<H>()?;
let (root_hash_vec, tree_batch) = tree_cache.into();
if root_hash_vec.len() != 1 {
bail!(
"appending a value set failed, we expected a single root hash, but got {}",
root_hash_vec.len()
);
}
Ok((root_hash_vec[0], tree_batch))
}
/// Same as [`put_value_sets`], this method returns a Merkle proof for every update of the Merkle tree.
/// The proofs can be verified using the [`verify_update`] method, which requires the old `root_hash`, the `merkle_proof` and the new `root_hash`
/// The first argument contains all the root hashes that were stored in the tree cache so far. The last one is the new root hash of the tree.
pub fn put_value_sets_with_proof(
&self,
value_sets: impl IntoIterator<Item = impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>>,
first_version: Version,
) -> Result<(Vec<(RootHash, UpdateMerkleProof<H>)>, TreeUpdateBatch)> {
let mut tree_cache = TreeCache::new(self.reader, first_version)?;
let mut batch_proofs = Vec::new();
for (idx, value_set) in value_sets.into_iter().enumerate() {
let version = first_version + idx as u64;
let mut proofs = Vec::new();
for (i, (key, value)) in value_set.into_iter().enumerate() {
let action = if value.is_some() { "insert" } else { "delete" };
let value_hash = value.as_ref().map(|v| ValueHash::with::<H>(v));
tree_cache.put_value(version, key, value.clone());
let merkle_proof = self
.put(key, value_hash, version, &mut tree_cache, true)
.with_context(|| {
format!(
"failed to {} key {} for version {}, key = {:?}",
action, i, version, key
)
})?
.unwrap();
proofs.push(merkle_proof);
}
batch_proofs.push(UpdateMerkleProof::new(proofs));
// Freezes the current cache to make all contents in the current cache immutable.
tree_cache.freeze::<H>()?;
}
let (root_hashes, update_batch): (Vec<RootHash>, TreeUpdateBatch) = tree_cache.into();
let zipped_hashes_proofs = root_hashes
.into_iter()
.zip(batch_proofs.into_iter())
.collect();
Ok((zipped_hashes_proofs, update_batch))
}
fn put(
&self,
key: KeyHash,
value: Option<ValueHash>,
version: Version,
tree_cache: &mut TreeCache<R>,
with_proof: bool,
) -> Result<Option<SparseMerkleProof<H>>> {
// tree_cache.ensure_initialized()?;
let nibble_path = NibblePath::new(key.0.to_vec());
// Get the root node. If this is the first operation, it would get the root node from the
// underlying db. Otherwise it most likely would come from `cache`.
let root_node_key = tree_cache.get_root_node_key().clone();
let mut nibble_iter = nibble_path.nibbles();
let (put_result, merkle_proof) = self.insert_at(
root_node_key,
version,
&mut nibble_iter,
value,
tree_cache,
with_proof,
)?;
// Start insertion from the root node.
match put_result {
PutResult::Updated((new_root_node_key, _)) => {
tree_cache.set_root_node_key(new_root_node_key);
}
PutResult::NotChanged => {
// Nothing has changed, so do nothing
}
PutResult::Removed => {
// root node becomes empty, insert a null node at root
let genesis_root_key = NodeKey::new_empty_path(version);
tree_cache.set_root_node_key(genesis_root_key.clone());
tree_cache.put_node(genesis_root_key, Node::new_null())?;
}
}
Ok(merkle_proof)
}
/// Helper function for recursive insertion into the subtree that starts from the current
/// [`NodeKey`](node_type/struct.NodeKey.html). Returns the newly inserted node.
/// It is safe to use recursion here because the max depth is limited by the key length which
/// for this tree is the length of the hash of account addresses.
fn insert_at(
&self,
root_node_key: NodeKey,
version: Version,
nibble_iter: &mut NibbleIterator,
value: Option<ValueHash>,
tree_cache: &mut TreeCache<R>,
with_proof: bool,
) -> Result<(PutResult<(NodeKey, Node)>, Option<SparseMerkleProof<H>>)> {
// Because deletions could cause the root node not to exist, we try to get the root node,
// and if it doesn't exist, we synthesize a `Null` node, noting that it hasn't yet been
// committed anywhere (we need to track this because the tree cache will panic if we try to
// delete a node that it doesn't know about).
let (node, node_already_exists) = tree_cache
.get_node_option(&root_node_key)?
.map(|node| (node, true))
.unwrap_or((Node::Null, false));
match node {
Node::Internal(internal_node) => self.insert_at_internal_node(
root_node_key,
internal_node,
version,
nibble_iter,
value,
tree_cache,
with_proof,
),
Node::Leaf(leaf_node) => self.insert_at_leaf_node(
root_node_key,
leaf_node,
version,
nibble_iter,
value,
tree_cache,
with_proof,
),
Node::Null => {
let merkle_proof_null = if with_proof {
Some(SparseMerkleProof::new(None, vec![]))
} else {
None
};
if !root_node_key.nibble_path().is_empty() {
bail!(
"Null node exists for non-root node with node_key {:?}",
root_node_key
);
}
// Delete the old null node if the at the same version
if root_node_key.version() == version && node_already_exists {
tree_cache.delete_node(&root_node_key, false /* is_leaf */);
}
if let Some(value) = value {
// If we're inserting into the null root node, we should change it to be a leaf node
let (new_root_node_key, new_root_node) = Self::create_leaf_node(
NodeKey::new_empty_path(version),
nibble_iter,
value,
tree_cache,
)?;
Ok((
PutResult::Updated((new_root_node_key, new_root_node)),
merkle_proof_null,
))
} else {
// If we're deleting from the null root node, nothing needs to change
Ok((PutResult::NotChanged, merkle_proof_null))
}
}
}
}
/// Helper function for recursive insertion into the subtree that starts from the current
/// `internal_node`. Returns the newly inserted node with its
/// [`NodeKey`](node_type/struct.NodeKey.html).
fn insert_at_internal_node(
&self,
mut node_key: NodeKey,
internal_node: InternalNode,
version: Version,
nibble_iter: &mut NibbleIterator,
value: Option<ValueHash>,
tree_cache: &mut TreeCache<R>,
with_proof: bool,
) -> Result<(PutResult<(NodeKey, Node)>, Option<SparseMerkleProof<H>>)> {
// Find the next node to visit following the next nibble as index.
let child_index = nibble_iter.next().expect("Ran out of nibbles");
// Traverse downwards from this internal node recursively to get the `node_key` of the child
// node at `child_index`.
let (put_result, merkle_proof) = match internal_node.child(child_index) {
Some(child) => {
let (child_node_key, mut siblings) = if with_proof {
let (child_key, siblings) = internal_node.get_child_with_siblings::<H>(
tree_cache,
&node_key,
child_index,
);
(child_key.unwrap(), siblings)
} else {
(
node_key.gen_child_node_key(child.version, child_index),
vec![],
)
};
let (update_result, proof_opt) = self.insert_at(
child_node_key,
version,
nibble_iter,
value,
tree_cache,
with_proof,
)?;
let new_proof_opt = proof_opt.map(|proof| {
// The move siblings function allows zero copy moves for proof
let proof_leaf = proof.leaf();
let mut new_siblings = proof.take_siblings();
// We need to reverse the siblings
siblings.reverse();
new_siblings.append(&mut siblings);
SparseMerkleProof::new(proof_leaf, new_siblings)
});
(update_result, new_proof_opt)
}
None => {
// In that case we couldn't find a child for this node at the nibble's position.
// We have to traverse down the virtual 4-level tree (which is the compressed
// representation of the jellyfish merkle tree) to get the closest leaf of the nibble
// we are looking for.
let merkle_proof = if with_proof {
let (child_key_opt, mut siblings) = internal_node
.get_only_child_with_siblings::<H>(tree_cache, &node_key, child_index);
let leaf: Option<SparseMerkleLeafNode> = child_key_opt.map(|child_key|
{
// We should be able to find the node in the case
let node = tree_cache.get_node(&child_key).expect("this node should be in the cache");
match node {
Leaf(leaf_node) => {
leaf_node.into()
},
_ => unreachable!("get_only_child_with_siblings should return a leaf node in that case")
}
});
siblings.reverse();
Some(SparseMerkleProof::new(leaf, siblings))
} else {
None
};
if let Some(value) = value {
// insert
let new_child_node_key = node_key.gen_child_node_key(version, child_index);
// The Merkle proof doesn't have a leaf
(
PutResult::Updated(Self::create_leaf_node(
new_child_node_key,
nibble_iter,
value,
tree_cache,
)?),
merkle_proof,
)
} else {
// If there was no changes, don't generate a proof
(
PutResult::NotChanged,
if with_proof {
Some(SparseMerkleProof::new(None, vec![]))
} else {
None
},
)
}
}
};
// Reuse the current `InternalNode` in memory to create a new internal node.
let mut children: Children = internal_node.into();
match put_result {
PutResult::NotChanged => {
return Ok((
PutResult::NotChanged,
if with_proof {
Some(SparseMerkleProof::new(None, vec![]))
} else {
None
},
));
}
PutResult::Updated((_, new_node)) => {
// update child
children.insert(
child_index,
Child::new(new_node.hash::<H>(), version, new_node.node_type()),
);
}
PutResult::Removed => {
// remove child
children.remove(child_index);
}
}
// We always delete the existing internal node here because it will not be referenced anyway
// since this version.
tree_cache.delete_node(&node_key, false /* is_leaf */);
let mut it = children.iter();
if let Some((child_nibble, child)) = it.next() {
if it.next().is_none() && child.is_leaf() {
// internal node has only one child left and it's leaf node, replace it with the leaf node
let child_key = node_key.gen_child_node_key(child.version, child_nibble);
let child_node = tree_cache.get_node(&child_key)?;
tree_cache.delete_node(&child_key, true /* is_leaf */);
node_key.set_version(version);
tree_cache.put_node(node_key.clone(), child_node.clone())?;
Ok((PutResult::Updated((node_key, child_node)), merkle_proof))
} else {
drop(it);
let new_internal_node: InternalNode = InternalNode::new(children);
node_key.set_version(version);
// Cache this new internal node.
tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
Ok((
PutResult::Updated((node_key, new_internal_node.into())),
merkle_proof,
))
}
} else {
// internal node becomes empty, remove it
Ok((PutResult::Removed, merkle_proof))
}
}
/// Helper function for recursive insertion into the subtree that starts from the
/// `existing_leaf_node`. Returns the newly inserted node with its
/// [`NodeKey`](node_type/struct.NodeKey.html).
fn insert_at_leaf_node(
&self,
/* the root of the subtree we are inserting into */
mut node_key: NodeKey,
/* the leaf node that we are inserting at */
existing_leaf_node: LeafNode,
version: Version,
/* the nibble iterator of the key hash we are inserting */
nibble_iter: &mut NibbleIterator,
value_hash: Option<ValueHash>,
tree_cache: &mut TreeCache<R>,
with_proof: bool,
) -> Result<(PutResult<(NodeKey, Node)>, Option<SparseMerkleProof<H>>)> {
// We are inserting a new key that shares a common prefix with the existing leaf node.
// This check is to make sure that the visited nibble path of the inserted key is a
// subpath of the existing leaf node's nibble path.
let mut visited_path = nibble_iter.visited_nibbles();
let path_to_leaf_node = NibblePath::new(existing_leaf_node.key_hash().0.to_vec());
let mut path_to_leaf = path_to_leaf_node.nibbles();
skip_common_prefix(&mut visited_path, &mut path_to_leaf);
assert!(
visited_path.is_finished(),
"Inserting a key at the wrong leaf node (no common prefix - index={})",
path_to_leaf.visited_nibbles().num_nibbles()
);
// We have established that the visited nibble path of the inserted key is a prefix of the
// leaf node's nibble path. Now, we can check if the unvisited nibble path of the inserted
// key overlaps with more the leaf node's nibble path.
let mut path_to_leaf_remaining = path_to_leaf.remaining_nibbles();
// To do this, we skip the common prefix between the remaining nibbles of the inserted key and
// and those of the leaf node.
let common_nibbles = skip_common_prefix(nibble_iter, &mut path_to_leaf_remaining);
let mut common_nibble_path = nibble_iter.visited_nibbles().collect::<NibblePath>();
// If we have exhausted the nibble iterator of the inserted key, this means that the
// inserted key and leaf node have the same path. In this case, we just need to update the
// value of the leaf node.
if nibble_iter.is_finished() {
assert!(path_to_leaf_remaining.is_finished());
tree_cache.delete_node(&node_key, true /* is_leaf */);
let merkle_proof = if with_proof {
Some(SparseMerkleProof::new(
Some(existing_leaf_node.into()),
vec![],
))
} else {
None
};
if let Some(value_hash) = value_hash {
// The new leaf node will have the same nibble_path with a new version as node_key.
node_key.set_version(version);
// Create the new leaf node with the same address but new blob content.
return Ok((
PutResult::Updated(Self::create_leaf_node(
node_key,
nibble_iter,
value_hash,
tree_cache,
)?),
merkle_proof,
));
} else {
// deleted
return Ok((PutResult::Removed, merkle_proof));
};
}
// If skipping the common prefix leaves us with some remaining nibbles, this means that the
// two nibble paths do overlap, but are not identical. In this case, we need to create an internal
// node to represent the common prefix, and two leaf nodes to represent each leaves.
if let Some(value) = value_hash {
tree_cache.delete_node(&node_key, true /* is_leaf */);
// 2.2. both are unfinished(They have keys with same length so it's impossible to have one
// finished and the other not). This means the incoming key forks at some point between the
// position where step 1 ends and the last nibble, inclusive. Then create a seris of
// internal nodes the number of which equals to the length of the extra part of the
// common prefix in step 2, a new leaf node for the incoming key, and update the
// [`NodeKey`] of existing leaf node. We create new internal nodes in a bottom-up
// order.
let existing_leaf_index = path_to_leaf_remaining.next().expect("Ran out of nibbles");
let new_leaf_index = nibble_iter.next().expect("Ran out of nibbles");
assert_ne!(existing_leaf_index, new_leaf_index);
let mut children = Children::new();
children.insert(
existing_leaf_index,
Child::new(existing_leaf_node.hash::<H>(), version, NodeType::Leaf),
);
node_key = NodeKey::new(version, common_nibble_path.clone());
tree_cache.put_node(
node_key.gen_child_node_key(version, existing_leaf_index),
existing_leaf_node.clone().into(),
)?;
let (_, new_leaf_node) = Self::create_leaf_node(
node_key.gen_child_node_key(version, new_leaf_index),
nibble_iter,
value,
tree_cache,
)?;
children.insert(
new_leaf_index,
Child::new(new_leaf_node.hash::<H>(), version, NodeType::Leaf),
);
let internal_node = InternalNode::new(children);
let mut next_internal_node = internal_node.clone();
tree_cache.put_node(node_key.clone(), internal_node.into())?;
for _i in 0..common_nibbles {
// Pop a nibble from the end of path.
let nibble = common_nibble_path
.pop()
.expect("Common nibble_path below internal node ran out of nibble");
node_key = NodeKey::new(version, common_nibble_path.clone());
let mut children = Children::new();
children.insert(
nibble,
Child::new(
next_internal_node.hash::<H>(),
version,
next_internal_node.node_type(),
),
);
let internal_node = InternalNode::new(children);
next_internal_node = internal_node.clone();
tree_cache.put_node(node_key.clone(), internal_node.into())?;
}
Ok((
PutResult::Updated((node_key, next_internal_node.into())),
if with_proof {
Some(SparseMerkleProof::new(
Some(existing_leaf_node.into()),
vec![],
))
} else {
None
},
))
} else {
// delete not found
Ok((
PutResult::NotChanged,
if with_proof {
Some(SparseMerkleProof::new(None, vec![]))
} else {
None
},
))
}
}
/// Helper function for creating leaf nodes. Returns the newly created leaf node.
fn create_leaf_node(
node_key: NodeKey,
nibble_iter: &NibbleIterator,
value_hash: ValueHash,
tree_cache: &mut TreeCache<R>,
) -> Result<(NodeKey, Node)> {
// Get the underlying bytes of nibble_iter which must be a key, i.e., hashed account address
// with `HashValue::LENGTH` bytes.
let new_leaf_node = Node::new_leaf(
KeyHash(
nibble_iter
.get_nibble_path()
.bytes()
.try_into()
.expect("LeafNode must have full nibble path."),
),
value_hash,
);
tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
Ok((node_key, new_leaf_node))
}
/// Returns the value (if applicable) and the corresponding merkle proof.
pub fn get_with_proof(
&self,
key: KeyHash,
version: Version,
) -> Result<(Option<OwnedValue>, SparseMerkleProof<H>)> {
// Empty tree just returns proof with no sibling hash.
let mut next_node_key = NodeKey::new_empty_path(version);
let mut siblings: Vec<SparseMerkleNode> = vec![];
let nibble_path = NibblePath::new(key.0.to_vec());
let mut nibble_iter = nibble_path.nibbles();
// We limit the number of loops here deliberately to avoid potential cyclic graph bugs
// in the tree structure.
for nibble_depth in 0..=ROOT_NIBBLE_HEIGHT {
let next_node = self.reader.get_node(&next_node_key).map_err(|err| {
if nibble_depth == 0 {
anyhow::anyhow!(MissingRootError { version })
} else {
err
}
})?;
match next_node {
Node::Internal(internal_node) => {
let queried_child_index = nibble_iter
.next()
.ok_or_else(|| format_err!("ran out of nibbles"))?;
let (child_node_key, mut siblings_in_internal) = internal_node
.get_only_child_with_siblings::<H>(
self.reader,
&next_node_key,
queried_child_index,
);
siblings.append(&mut siblings_in_internal);
next_node_key = match child_node_key {
Some(node_key) => node_key,
None => {
return Ok((
None,
SparseMerkleProof::new(None, {
siblings.reverse();
siblings
}),
))
}
};
}
Node::Leaf(leaf_node) => {
return Ok((
if leaf_node.key_hash() == key {
Some(self.reader.get_value(version, leaf_node.key_hash())?)
} else {
None
},
SparseMerkleProof::new(Some(leaf_node.into()), {
siblings.reverse();
siblings
}),
));
}
Node::Null => {
if nibble_depth == 0 {
return Ok((None, SparseMerkleProof::new(None, vec![])));
} else {
bail!(
"Non-root null node exists with node key {:?}",
next_node_key
);
}
}
}
}
bail!("Jellyfish Merkle tree has cyclic graph inside.");
}
fn search_closest_extreme_node(
&self,
version: Version,
extreme: Extreme,
to: NibblePath,
parents: Vec<InternalNode>,
) -> Result<Option<KeyHash>> {
fn neighbor_nibble(
node: &InternalNode,
child_index: Nibble,
extreme: Extreme,
) -> Option<(Nibble, Version)> {
match extreme {
// Rightmost left neighbor
Extreme::Left => node
.children_unsorted()
.filter(|(nibble, _)| nibble < &child_index)
.max_by_key(|(nibble, _)| *nibble)
.map(|p| (p.0, p.1.version)),
// Leftmost right neighbor
Extreme::Right => node
.children_unsorted()
.filter(|(nibble, _)| nibble > &child_index)
.min_by_key(|(nibble, _)| *nibble)
.map(|p| (p.0, p.1.version)),
}
}
let mut parents = parents;
let mut path = to;
while let (Some(index), Some(parent)) = (path.pop(), parents.pop()) {
if let Some((neighbor, found_version)) = neighbor_nibble(&parent, index, extreme) {
// nibble path will represent the left nibble path. this is currently at
// the parent of the leaf for `key`
path.push(neighbor);
return Ok(Some(self.get_extreme_key_hash(
version,
NodeKey::new(found_version, path.clone()),
path.num_nibbles(),
extreme.opposite(),
)?));
}
}
Ok(None)
}
// given a search_key,
fn search_for_closest_node(
&self,
version: Version,
search_key: KeyHash,
) -> Result<SearchResult> {
let search_path = NibblePath::new(search_key.0.to_vec());
let mut search_nibbles = search_path.nibbles();
let mut next_node_key = NodeKey::new_empty_path(version);
let mut internal_nodes = vec![];
for nibble_depth in 0..=ROOT_NIBBLE_HEIGHT {
let next_node = self.reader.get_node(&next_node_key).map_err(|err| {
if nibble_depth == 0 {
anyhow::anyhow!(MissingRootError { version })
} else {
err
}
})?;
match next_node {
Node::Internal(node) => {
internal_nodes.push(node.clone());
let queried_child_index = search_nibbles
.next()
.ok_or_else(|| format_err!("ran out of nibbles"))?;
let child_node_key =
node.get_only_child_without_siblings(&next_node_key, queried_child_index);
match child_node_key {
Some(node_key) => {
next_node_key = node_key;
}
None => {
return Ok(SearchResult::FoundInternal {
path_to_internal: search_nibbles
.visited_nibbles()
.get_nibble_path(),
parents: internal_nodes,
});
}
}
}
Node::Leaf(node) => {
let key_hash = node.key_hash();
return Ok(SearchResult::FoundLeaf {
ordering: key_hash.cmp(&search_key),
leaf_hash: key_hash,
path_to_leaf: search_nibbles.visited_nibbles().get_nibble_path(),
parents: internal_nodes,
});
}
Node::Null => {
if nibble_depth == 0 {
bail!(
"Cannot manufacture nonexistence proof by exclusion for the empty tree"
);
} else {
bail!(
"Non-root null node exists with node key {:?}",
next_node_key
);
}
}
}
}
bail!("Jellyfish Merkle tree has cyclic graph inside.");
}
fn get_bounding_path(
&self,
search_key: KeyHash,
version: Version,
) -> Result<(Option<KeyHash>, Option<KeyHash>)> {
let search_result = self.search_for_closest_node(version, search_key)?;
match search_result {
SearchResult::FoundLeaf {
ordering,
leaf_hash,
path_to_leaf,
parents,
} => {
match ordering {
Ordering::Less => {
// found the closest leaf to the left of the search key.
// find the other bound (the leftmost right keyhash)
let leftmost_right_keyhash = self.search_closest_extreme_node(
version,
Extreme::Right,
path_to_leaf,
parents,
)?;
Ok((Some(leaf_hash), leftmost_right_keyhash))
}
Ordering::Greater => {
// found the closest leaf to the right of the search key
let rightmost_left_keyhash = self.search_closest_extreme_node(
version,
Extreme::Left,
path_to_leaf,
parents,
)?;
Ok((rightmost_left_keyhash, Some(leaf_hash)))
}
Ordering::Equal => {
bail!("found exact key when searching for bounding path for nonexistence proof")
}
}
}
SearchResult::FoundInternal {
path_to_internal,
parents,
} => {
let leftmost_right_keyhash = self.search_closest_extreme_node(
version,
Extreme::Right,
path_to_internal.clone(),
parents.clone(),
)?;
let rightmost_left_keyhash = self.search_closest_extreme_node(
version,
Extreme::Left,
path_to_internal,
parents,
)?;
Ok((rightmost_left_keyhash, leftmost_right_keyhash))
}
}
}
/// Returns the value (if applicable) and the corresponding merkle proof.
pub fn get_with_exclusion_proof(
&self,
key_hash: KeyHash,
version: Version,
) -> Result<Result<(OwnedValue, SparseMerkleProof<H>), ExclusionProof<H>>> {
// Optimistically attempt get_with_proof, if that succeeds, we're done.
if let (Some(value), proof) = self.get_with_proof(key_hash, version)? {
return Ok(Ok((value, proof)));
}
// Otherwise, we know this key doesn't exist, so construct an exclusion proof.
// first, find out what are its bounding path, i.e. the greatest key that is strictly less
// than the non-present search key and/or the smallest key that is strictly greater than
// the search key.
let (left_bound, right_bound) = self.get_bounding_path(key_hash, version)?;
match (left_bound, right_bound) {
(Some(left_bound), Some(right_bound)) => {
let left_proof = self.get_with_proof(left_bound, version)?.1;
let right_proof = self.get_with_proof(right_bound, version)?.1;
Ok(Err(ExclusionProof::Middle {
rightmost_left_proof: left_proof,
leftmost_right_proof: right_proof,
}))
}
(Some(left_bound), None) => {
let left_proof = self.get_with_proof(left_bound, version)?.1;
Ok(Err(ExclusionProof::Rightmost {
rightmost_left_proof: left_proof,
}))
}
(None, Some(right_bound)) => {
let right_proof = self.get_with_proof(right_bound, version)?.1;
Ok(Err(ExclusionProof::Leftmost {
leftmost_right_proof: right_proof,
}))
}
_ => bail!("Invalid exclusion proof"),
}
}
fn get_extreme_key_hash(
&self,
version: Version,
mut node_key: NodeKey,
nibble_depth: usize,
extreme: Extreme,
) -> Result<KeyHash> {
// Depending on the extreme specified, get either the least nibble or the most nibble
let min_or_max = |internal_node: &InternalNode| {
match extreme {
Extreme::Left => internal_node.children_unsorted().min_by_key(|c| c.0),
Extreme::Right => internal_node.children_unsorted().max_by_key(|c| c.0),
}
.map(|(nibble, _)| nibble)
};
for nibble_depth in nibble_depth..=ROOT_NIBBLE_HEIGHT {
let node = self.reader.get_node(&node_key).map_err(|err| {
if nibble_depth == 0 {
anyhow::anyhow!(MissingRootError { version })
} else {
err
}
})?;
match node {
Node::Internal(internal_node) => {
// Find the leftmost nibble in the children
let queried_child_index =
min_or_max(&internal_node).expect("a child always exists");
let child_node_key = internal_node
.get_only_child_without_siblings(&node_key, queried_child_index);
// Proceed downwards
node_key = match child_node_key {
Some(node_key) => node_key,
None => {
bail!("Internal node has no children");
}
};
}
Node::Leaf(leaf_node) => {
return Ok(leaf_node.key_hash());
}
Node::Null => bail!("Null node cannot have children"),
}
}
bail!("Jellyfish Merkle tree has cyclic graph inside.");
}
fn get_without_proof(&self, key: KeyHash, version: Version) -> Result<Option<OwnedValue>> {
self.reader.get_value_option(version, key)
}
/// Gets the proof that shows a list of keys up to `rightmost_key_to_prove` exist at `version`.
pub fn get_range_proof(
&self,
rightmost_key_to_prove: KeyHash,
version: Version,
) -> Result<SparseMerkleRangeProof<H>> {
let (account, proof) = self.get_with_proof(rightmost_key_to_prove, version)?;
ensure!(account.is_some(), "rightmost_key_to_prove must exist.");
let siblings = proof
.siblings()
.iter()
.rev()
.zip(rightmost_key_to_prove.0.iter_bits())
.filter_map(|(sibling, bit)| {
// We only need to keep the siblings on the right.
if !bit {
Some(*sibling)
} else {
None
}
})
.rev()
.collect();
Ok(SparseMerkleRangeProof::new(siblings))
}
/// Returns the value (if applicable), without any proof.
///
/// Equivalent to [`get_with_proof`](JellyfishMerkleTree::get_with_proof) and dropping the
/// proof, but more efficient.
pub fn get(&self, key: KeyHash, version: Version) -> Result<Option<OwnedValue>> {
self.get_without_proof(key, version)
}
fn get_root_node(&self, version: Version) -> Result<Node> {
self.get_root_node_option(version)?
.ok_or_else(|| format_err!("Root node not found for version {}.", version))
}
pub(crate) fn get_root_node_option(&self, version: Version) -> Result<Option<Node>> {
let root_node_key = NodeKey::new_empty_path(version);
self.reader.get_node_option(&root_node_key)
}
pub fn get_root_hash(&self, version: Version) -> Result<RootHash> {
self.get_root_node(version).map(|n| RootHash(n.hash::<H>()))
}
pub fn get_root_hash_option(&self, version: Version) -> Result<Option<RootHash>> {
Ok(self
.get_root_node_option(version)?
.map(|n| RootHash(n.hash::<H>())))
}
// TODO: should this be public? seems coupled to tests?
pub fn get_leaf_count(&self, version: Version) -> Result<usize> {
self.get_root_node(version).map(|n| n.leaf_count())
}
}
/// The result of putting a single key-value pair into the tree, or deleting a key.
enum PutResult<T> {
// Put a key-value pair successfully.
Updated(T),
// Deleted a key successfully.
Removed,
// Key to delete not found.
NotChanged,
}
/// A proof of non-existence by exclusion between two adjacent neighbors.
#[derive(Debug)]
pub enum ExclusionProof<H: SimpleHasher> {
Leftmost {
leftmost_right_proof: SparseMerkleProof<H>,
},
Middle {
leftmost_right_proof: SparseMerkleProof<H>,
rightmost_left_proof: SparseMerkleProof<H>,
},
Rightmost {
rightmost_left_proof: SparseMerkleProof<H>,
},
}
#[derive(Debug, Clone, Copy)]
enum Extreme {
Left,
Right,
}
impl Extreme {
fn opposite(&self) -> Self {
match self {
Extreme::Left => Extreme::Right,
Extreme::Right => Extreme::Left,
}
}
}
#[derive(Debug)]
enum SearchResult {
FoundLeaf {
ordering: Ordering,
leaf_hash: KeyHash,
path_to_leaf: NibblePath,
parents: Vec<InternalNode>,
},
FoundInternal {
path_to_internal: NibblePath,
parents: Vec<InternalNode>,
},
}