jmt/
tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
use crate::storage::Node::Leaf;
use alloc::{collections::BTreeMap, vec::Vec};
use alloc::{format, vec};
use anyhow::{bail, ensure, format_err, Context, Result};
use core::marker::PhantomData;
use core::{cmp::Ordering, convert::TryInto};
#[cfg(not(feature = "std"))]
use hashbrown::HashMap;
#[cfg(feature = "std")]
use std::collections::HashMap;

use crate::proof::definition::UpdateMerkleProof;
use crate::proof::{SparseMerkleLeafNode, SparseMerkleNode};
use crate::{
    node_type::{Child, Children, InternalNode, LeafNode, Node, NodeKey, NodeType},
    storage::{TreeReader, TreeUpdateBatch},
    tree_cache::TreeCache,
    types::{
        nibble::{
            nibble_path::{skip_common_prefix, NibbleIterator, NibblePath},
            Nibble, NibbleRangeIterator, ROOT_NIBBLE_HEIGHT,
        },
        proof::{SparseMerkleProof, SparseMerkleRangeProof},
        Version,
    },
    Bytes32Ext, KeyHash, MissingRootError, OwnedValue, RootHash, SimpleHasher, ValueHash,
};

/// A [`JellyfishMerkleTree`] instantiated using the `sha2::Sha256` hasher.
/// This is a sensible default choice for most applications.
#[cfg(any(test, feature = "sha2"))]
pub type Sha256Jmt<'a, R> = JellyfishMerkleTree<'a, R, sha2::Sha256>;

/// A Jellyfish Merkle tree data structure, parameterized by a [`TreeReader`] `R`
/// and a [`SimpleHasher`] `H`. See [`crate`] for description.
pub struct JellyfishMerkleTree<'a, R, H: SimpleHasher> {
    reader: &'a R,
    _phantom_hasher: PhantomData<H>,
}

#[cfg(feature = "ics23")]
pub mod ics23_impl;

impl<'a, R, H> JellyfishMerkleTree<'a, R, H>
where
    R: 'a + TreeReader,
    H: SimpleHasher,
{
    /// Creates a `JellyfishMerkleTree` backed by the given [`TreeReader`].
    pub fn new(reader: &'a R) -> Self {
        Self {
            reader,
            _phantom_hasher: Default::default(),
        }
    }

    /// Get the node hash from the cache if exists, otherwise compute it.
    fn get_hash(
        node_key: &NodeKey,
        node: &Node,
        hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
    ) -> [u8; 32] {
        if let Some(cache) = hash_cache {
            match cache.get(node_key.nibble_path()) {
                Some(hash) => *hash,
                None => unreachable!("{:?} can not be found in hash cache", node_key),
            }
        } else {
            node.hash::<H>()
        }
    }

    /// The batch version of `put_value_sets`.
    pub fn batch_put_value_sets(
        &self,
        value_sets: Vec<Vec<(KeyHash, OwnedValue)>>,
        node_hashes: Option<Vec<&HashMap<NibblePath, [u8; 32]>>>,
        first_version: Version,
    ) -> Result<(Vec<RootHash>, TreeUpdateBatch)> {
        let mut tree_cache = TreeCache::new(self.reader, first_version)?;
        let hash_sets: Vec<_> = match node_hashes {
            Some(hashes) => hashes.into_iter().map(Some).collect(),
            None => (0..value_sets.len()).map(|_| None).collect(),
        };

        for (idx, (value_set, hash_set)) in
            itertools::zip_eq(value_sets.into_iter(), hash_sets.into_iter()).enumerate()
        {
            assert!(
                !value_set.is_empty(),
                "Transactions that output empty write set should not be included.",
            );
            let version = first_version + idx as u64;
            let deduped_and_sorted_kvs = value_set
                .into_iter()
                .collect::<BTreeMap<_, _>>()
                .into_iter()
                .map(|(key, value)| {
                    let value_hash = ValueHash::with::<H>(value.as_slice());
                    tree_cache.put_value(version, key, Some(value));
                    (key, value_hash)
                })
                .collect::<Vec<_>>();
            let root_node_key = tree_cache.get_root_node_key().clone();
            let (new_root_node_key, _) = self.batch_insert_at(
                root_node_key,
                version,
                deduped_and_sorted_kvs.as_slice(),
                0,
                &hash_set,
                &mut tree_cache,
            )?;
            tree_cache.set_root_node_key(new_root_node_key);

            // Freezes the current cache to make all contents in the current cache immutable.
            tree_cache.freeze::<H>()?;
        }

        Ok(tree_cache.into())
    }

    fn batch_insert_at(
        &self,
        mut node_key: NodeKey,
        version: Version,
        kvs: &[(KeyHash, ValueHash)],
        depth: usize,
        hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
        tree_cache: &mut TreeCache<R>,
    ) -> Result<(NodeKey, Node)> {
        assert!(!kvs.is_empty());

        let node = tree_cache.get_node(&node_key)?;
        Ok(match node {
            Node::Internal(internal_node) => {
                // We always delete the existing internal node here because it will not be referenced anyway
                // since this version.
                tree_cache.delete_node(&node_key, false /* is_leaf */);

                // Reuse the current `InternalNode` in memory to create a new internal node.
                let mut children: Children = internal_node.clone().into();

                // Traverse all the path touched by `kvs` from this internal node.
                for (left, right) in NibbleRangeIterator::new(kvs, depth) {
                    // Traverse downwards from this internal node recursively by splitting the updates into
                    // each child index
                    let child_index = kvs[left].0 .0.get_nibble(depth);

                    let (new_child_node_key, new_child_node) =
                        match internal_node.child(child_index) {
                            Some(child) => {
                                let child_node_key =
                                    node_key.gen_child_node_key(child.version, child_index);
                                self.batch_insert_at(
                                    child_node_key,
                                    version,
                                    &kvs[left..=right],
                                    depth + 1,
                                    hash_cache,
                                    tree_cache,
                                )?
                            }
                            None => {
                                let new_child_node_key =
                                    node_key.gen_child_node_key(version, child_index);
                                self.batch_create_subtree(
                                    new_child_node_key,
                                    version,
                                    &kvs[left..=right],
                                    depth + 1,
                                    hash_cache,
                                    tree_cache,
                                )?
                            }
                        };

                    children.insert(
                        child_index,
                        Child::new(
                            Self::get_hash(&new_child_node_key, &new_child_node, hash_cache),
                            version,
                            new_child_node.node_type(),
                        ),
                    );
                }
                let new_internal_node = InternalNode::new(children);

                node_key.set_version(version);

                // Cache this new internal node.
                tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
                (node_key, new_internal_node.into())
            }
            Node::Leaf(leaf_node) => {
                // We are on a leaf node but trying to insert another node, so we may diverge.
                // We always delete the existing leaf node here because it will not be referenced anyway
                // since this version.
                tree_cache.delete_node(&node_key, true /* is_leaf */);
                node_key.set_version(version);
                self.batch_create_subtree_with_existing_leaf(
                    node_key, version, leaf_node, kvs, depth, hash_cache, tree_cache,
                )?
            }
            Node::Null => {
                if !node_key.nibble_path().is_empty() {
                    bail!(
                        "Null node exists for non-root node with node_key {:?}",
                        node_key
                    );
                }

                if node_key.version() == version {
                    tree_cache.delete_node(&node_key, false /* is_leaf */);
                }
                self.batch_create_subtree(
                    NodeKey::new_empty_path(version),
                    version,
                    kvs,
                    depth,
                    hash_cache,
                    tree_cache,
                )?
            }
        })
    }

    #[allow(clippy::too_many_arguments)]
    fn batch_create_subtree_with_existing_leaf(
        &self,
        node_key: NodeKey,
        version: Version,
        existing_leaf_node: LeafNode,
        kvs: &[(KeyHash, ValueHash)],
        depth: usize,
        hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
        tree_cache: &mut TreeCache<R>,
    ) -> Result<(NodeKey, Node)> {
        let existing_leaf_key = existing_leaf_node.key_hash();

        if kvs.len() == 1 && kvs[0].0 == existing_leaf_key {
            let new_leaf_node = Node::Leaf(LeafNode::new(existing_leaf_key, kvs[0].1));
            tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
            Ok((node_key, new_leaf_node))
        } else {
            let existing_leaf_bucket = existing_leaf_key.0.get_nibble(depth);
            let mut isolated_existing_leaf = true;
            let mut children = Children::new();
            for (left, right) in NibbleRangeIterator::new(kvs, depth) {
                let child_index = kvs[left].0 .0.get_nibble(depth);
                let child_node_key = node_key.gen_child_node_key(version, child_index);
                let (new_child_node_key, new_child_node) = if existing_leaf_bucket == child_index {
                    isolated_existing_leaf = false;
                    self.batch_create_subtree_with_existing_leaf(
                        child_node_key,
                        version,
                        existing_leaf_node.clone(),
                        &kvs[left..=right],
                        depth + 1,
                        hash_cache,
                        tree_cache,
                    )?
                } else {
                    self.batch_create_subtree(
                        child_node_key,
                        version,
                        &kvs[left..=right],
                        depth + 1,
                        hash_cache,
                        tree_cache,
                    )?
                };
                children.insert(
                    child_index,
                    Child::new(
                        Self::get_hash(&new_child_node_key, &new_child_node, hash_cache),
                        version,
                        new_child_node.node_type(),
                    ),
                );
            }
            if isolated_existing_leaf {
                let existing_leaf_node_key =
                    node_key.gen_child_node_key(version, existing_leaf_bucket);
                children.insert(
                    existing_leaf_bucket,
                    Child::new(existing_leaf_node.hash::<H>(), version, NodeType::Leaf),
                );

                tree_cache.put_node(existing_leaf_node_key, existing_leaf_node.into())?;
            }

            let new_internal_node = InternalNode::new(children);

            tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
            Ok((node_key, new_internal_node.into()))
        }
    }

    fn batch_create_subtree(
        &self,
        node_key: NodeKey,
        version: Version,
        kvs: &[(KeyHash, ValueHash)],
        depth: usize,
        hash_cache: &Option<&HashMap<NibblePath, [u8; 32]>>,
        tree_cache: &mut TreeCache<R>,
    ) -> Result<(NodeKey, Node)> {
        if kvs.len() == 1 {
            let new_leaf_node = Node::Leaf(LeafNode::new(kvs[0].0, kvs[0].1));
            tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
            Ok((node_key, new_leaf_node))
        } else {
            let mut children = Children::new();
            for (left, right) in NibbleRangeIterator::new(kvs, depth) {
                let child_index = kvs[left].0 .0.get_nibble(depth);
                let child_node_key = node_key.gen_child_node_key(version, child_index);
                let (new_child_node_key, new_child_node) = self.batch_create_subtree(
                    child_node_key,
                    version,
                    &kvs[left..=right],
                    depth + 1,
                    hash_cache,
                    tree_cache,
                )?;
                children.insert(
                    child_index,
                    Child::new(
                        Self::get_hash(&new_child_node_key, &new_child_node, hash_cache),
                        version,
                        new_child_node.node_type(),
                    ),
                );
            }
            let new_internal_node = InternalNode::new(children);

            tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
            Ok((node_key, new_internal_node.into()))
        }
    }

    /// This is a convenient function that calls
    /// [`put_value_sets`](struct.JellyfishMerkleTree.html#method.put_value_sets) with a single
    /// `keyed_value_set`.
    pub fn put_value_set(
        &self,
        value_set: impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>,
        version: Version,
    ) -> Result<(RootHash, TreeUpdateBatch)> {
        let (root_hashes, tree_update_batch) = self.put_value_sets(vec![value_set], version)?;
        assert_eq!(
            root_hashes.len(),
            1,
            "root_hashes must consist of a single value.",
        );
        Ok((root_hashes[0], tree_update_batch))
    }

    /// This is a convenient function that calls
    /// [`put_value_sets_with_proof`](struct.JellyfishMerkleTree.html#method.put_value_sets) with a single
    /// `keyed_value_set`.
    pub fn put_value_set_with_proof(
        &self,
        value_set: impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>,
        version: Version,
    ) -> Result<(RootHash, UpdateMerkleProof<H>, TreeUpdateBatch)> {
        let (mut hash_and_proof, batch_update) =
            self.put_value_sets_with_proof(vec![value_set], version)?;
        assert_eq!(
            hash_and_proof.len(),
            1,
            "root_hashes must consist of a single value.",
        );

        let (hash, proof) = hash_and_proof.pop().unwrap();

        Ok((hash, proof, batch_update))
    }

    /// Returns the new nodes and values in a batch after applying `value_set`. For
    /// example, if after transaction `T_i` the committed state of tree in the persistent storage
    /// looks like the following structure:
    ///
    /// ```text
    ///              S_i
    ///             /   \
    ///            .     .
    ///           .       .
    ///          /         \
    ///         o           x
    ///        / \
    ///       A   B
    ///        storage (disk)
    /// ```
    ///
    /// where `A` and `B` denote the states of two adjacent accounts, and `x` is a sibling subtree
    /// of the path from root to A and B in the tree. Then a `value_set` produced by the next
    /// transaction `T_{i+1}` modifies other accounts `C` and `D` exist in the subtree under `x`, a
    /// new partial tree will be constructed in memory and the structure will be:
    ///
    /// ```text
    ///                 S_i      |      S_{i+1}
    ///                /   \     |     /       \
    ///               .     .    |    .         .
    ///              .       .   |   .           .
    ///             /         \  |  /             \
    ///            /           x | /               x'
    ///           o<-------------+-               / \
    ///          / \             |               C   D
    ///         A   B            |
    ///           storage (disk) |    cache (memory)
    /// ```
    ///
    /// With this design, we are able to query the global state in persistent storage and
    /// generate the proposed tree delta based on a specific root hash and `value_set`. For
    /// example, if we want to execute another transaction `T_{i+1}'`, we can use the tree `S_i` in
    /// storage and apply the `value_set` of transaction `T_{i+1}`. Then if the storage commits
    /// the returned batch, the state `S_{i+1}` is ready to be read from the tree by calling
    /// [`get_with_proof`](struct.JellyfishMerkleTree.html#method.get_with_proof). Anything inside
    /// the batch is not reachable from public interfaces before being committed.
    pub fn put_value_sets(
        &self,
        value_sets: impl IntoIterator<Item = impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>>,
        first_version: Version,
    ) -> Result<(Vec<RootHash>, TreeUpdateBatch)> {
        let mut tree_cache = TreeCache::new(self.reader, first_version)?;
        for (idx, value_set) in value_sets.into_iter().enumerate() {
            let version = first_version + idx as u64;
            for (i, (key, value)) in value_set.into_iter().enumerate() {
                let action = if value.is_some() { "insert" } else { "delete" };
                let value_hash = value.as_ref().map(|v| ValueHash::with::<H>(v));
                tree_cache.put_value(version, key, value);
                self.put(key, value_hash, version, &mut tree_cache, false)
                    .with_context(|| {
                        format!(
                            "failed to {} key {} for version {}, key = {:?}",
                            action, i, version, key
                        )
                    })?;
            }

            // Freezes the current cache to make all contents in the current cache immutable.
            tree_cache.freeze::<H>()?;
        }

        Ok(tree_cache.into())
    }

    #[cfg(feature = "migration")]
    /// Append value sets to the latest version of the tree, without incrementing its version.
    pub fn append_value_set(
        &self,
        value_set: impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>,
        latest_version: Version,
    ) -> Result<(RootHash, TreeUpdateBatch)> {
        let mut tree_cache = TreeCache::new_overwrite(self.reader, latest_version)?;
        for (i, (key, value)) in value_set.into_iter().enumerate() {
            let action = if value.is_some() { "insert" } else { "delete" };
            let value_hash = value.as_ref().map(|v| ValueHash::with::<H>(v));
            tree_cache.put_value(latest_version, key, value);
            self.put(key, value_hash, latest_version, &mut tree_cache, false)
                .with_context(|| {
                    format!(
                        "failed to {} key {} for version {}, key = {:?}",
                        action, i, latest_version, key
                    )
                })?;
        }

        // Freezes the current cache to make all contents in the current cache immutable.
        tree_cache.freeze::<H>()?;
        let (root_hash_vec, tree_batch) = tree_cache.into();
        if root_hash_vec.len() != 1 {
            bail!(
                "appending a value set failed, we expected a single root hash, but got {}",
                root_hash_vec.len()
            );
        }
        Ok((root_hash_vec[0], tree_batch))
    }

    /// Same as [`put_value_sets`], this method returns a Merkle proof for every update of the Merkle tree.
    /// The proofs can be verified using the [`verify_update`] method, which requires the old `root_hash`, the `merkle_proof` and the new `root_hash`
    /// The first argument contains all the root hashes that were stored in the tree cache so far. The last one is the new root hash of the tree.
    pub fn put_value_sets_with_proof(
        &self,
        value_sets: impl IntoIterator<Item = impl IntoIterator<Item = (KeyHash, Option<OwnedValue>)>>,
        first_version: Version,
    ) -> Result<(Vec<(RootHash, UpdateMerkleProof<H>)>, TreeUpdateBatch)> {
        let mut tree_cache = TreeCache::new(self.reader, first_version)?;
        let mut batch_proofs = Vec::new();
        for (idx, value_set) in value_sets.into_iter().enumerate() {
            let version = first_version + idx as u64;
            let mut proofs = Vec::new();
            for (i, (key, value)) in value_set.into_iter().enumerate() {
                let action = if value.is_some() { "insert" } else { "delete" };
                let value_hash = value.as_ref().map(|v| ValueHash::with::<H>(v));
                tree_cache.put_value(version, key, value.clone());
                let merkle_proof = self
                    .put(key, value_hash, version, &mut tree_cache, true)
                    .with_context(|| {
                        format!(
                            "failed to {} key {} for version {}, key = {:?}",
                            action, i, version, key
                        )
                    })?
                    .unwrap();

                proofs.push(merkle_proof);
            }

            batch_proofs.push(UpdateMerkleProof::new(proofs));

            // Freezes the current cache to make all contents in the current cache immutable.
            tree_cache.freeze::<H>()?;
        }

        let (root_hashes, update_batch): (Vec<RootHash>, TreeUpdateBatch) = tree_cache.into();

        let zipped_hashes_proofs = root_hashes
            .into_iter()
            .zip(batch_proofs.into_iter())
            .collect();

        Ok((zipped_hashes_proofs, update_batch))
    }

    fn put(
        &self,
        key: KeyHash,
        value: Option<ValueHash>,
        version: Version,
        tree_cache: &mut TreeCache<R>,
        with_proof: bool,
    ) -> Result<Option<SparseMerkleProof<H>>> {
        // tree_cache.ensure_initialized()?;

        let nibble_path = NibblePath::new(key.0.to_vec());

        // Get the root node. If this is the first operation, it would get the root node from the
        // underlying db. Otherwise it most likely would come from `cache`.
        let root_node_key = tree_cache.get_root_node_key().clone();
        let mut nibble_iter = nibble_path.nibbles();

        let (put_result, merkle_proof) = self.insert_at(
            root_node_key,
            version,
            &mut nibble_iter,
            value,
            tree_cache,
            with_proof,
        )?;

        // Start insertion from the root node.
        match put_result {
            PutResult::Updated((new_root_node_key, _)) => {
                tree_cache.set_root_node_key(new_root_node_key);
            }
            PutResult::NotChanged => {
                // Nothing has changed, so do nothing
            }
            PutResult::Removed => {
                // root node becomes empty, insert a null node at root
                let genesis_root_key = NodeKey::new_empty_path(version);
                tree_cache.set_root_node_key(genesis_root_key.clone());
                tree_cache.put_node(genesis_root_key, Node::new_null())?;
            }
        }

        Ok(merkle_proof)
    }

    /// Helper function for recursive insertion into the subtree that starts from the current
    /// [`NodeKey`](node_type/struct.NodeKey.html). Returns the newly inserted node.
    /// It is safe to use recursion here because the max depth is limited by the key length which
    /// for this tree is the length of the hash of account addresses.
    fn insert_at(
        &self,
        root_node_key: NodeKey,
        version: Version,
        nibble_iter: &mut NibbleIterator,
        value: Option<ValueHash>,
        tree_cache: &mut TreeCache<R>,
        with_proof: bool,
    ) -> Result<(PutResult<(NodeKey, Node)>, Option<SparseMerkleProof<H>>)> {
        // Because deletions could cause the root node not to exist, we try to get the root node,
        // and if it doesn't exist, we synthesize a `Null` node, noting that it hasn't yet been
        // committed anywhere (we need to track this because the tree cache will panic if we try to
        // delete a node that it doesn't know about).
        let (node, node_already_exists) = tree_cache
            .get_node_option(&root_node_key)?
            .map(|node| (node, true))
            .unwrap_or((Node::Null, false));

        match node {
            Node::Internal(internal_node) => self.insert_at_internal_node(
                root_node_key,
                internal_node,
                version,
                nibble_iter,
                value,
                tree_cache,
                with_proof,
            ),
            Node::Leaf(leaf_node) => self.insert_at_leaf_node(
                root_node_key,
                leaf_node,
                version,
                nibble_iter,
                value,
                tree_cache,
                with_proof,
            ),
            Node::Null => {
                let merkle_proof_null = if with_proof {
                    Some(SparseMerkleProof::new(None, vec![]))
                } else {
                    None
                };

                if !root_node_key.nibble_path().is_empty() {
                    bail!(
                        "Null node exists for non-root node with node_key {:?}",
                        root_node_key
                    );
                }
                // Delete the old null node if the at the same version
                if root_node_key.version() == version && node_already_exists {
                    tree_cache.delete_node(&root_node_key, false /* is_leaf */);
                }
                if let Some(value) = value {
                    // If we're inserting into the null root node, we should change it to be a leaf node
                    let (new_root_node_key, new_root_node) = Self::create_leaf_node(
                        NodeKey::new_empty_path(version),
                        nibble_iter,
                        value,
                        tree_cache,
                    )?;
                    Ok((
                        PutResult::Updated((new_root_node_key, new_root_node)),
                        merkle_proof_null,
                    ))
                } else {
                    // If we're deleting from the null root node, nothing needs to change
                    Ok((PutResult::NotChanged, merkle_proof_null))
                }
            }
        }
    }

    /// Helper function for recursive insertion into the subtree that starts from the current
    /// `internal_node`. Returns the newly inserted node with its
    /// [`NodeKey`](node_type/struct.NodeKey.html).
    fn insert_at_internal_node(
        &self,
        mut node_key: NodeKey,
        internal_node: InternalNode,
        version: Version,
        nibble_iter: &mut NibbleIterator,
        value: Option<ValueHash>,
        tree_cache: &mut TreeCache<R>,
        with_proof: bool,
    ) -> Result<(PutResult<(NodeKey, Node)>, Option<SparseMerkleProof<H>>)> {
        // Find the next node to visit following the next nibble as index.
        let child_index = nibble_iter.next().expect("Ran out of nibbles");

        // Traverse downwards from this internal node recursively to get the `node_key` of the child
        // node at `child_index`.
        let (put_result, merkle_proof) = match internal_node.child(child_index) {
            Some(child) => {
                let (child_node_key, mut siblings) = if with_proof {
                    let (child_key, siblings) = internal_node.get_child_with_siblings::<H>(
                        tree_cache,
                        &node_key,
                        child_index,
                    );
                    (child_key.unwrap(), siblings)
                } else {
                    (
                        node_key.gen_child_node_key(child.version, child_index),
                        vec![],
                    )
                };

                let (update_result, proof_opt) = self.insert_at(
                    child_node_key,
                    version,
                    nibble_iter,
                    value,
                    tree_cache,
                    with_proof,
                )?;

                let new_proof_opt = proof_opt.map(|proof| {
                    // The move siblings function allows zero copy moves for proof
                    let proof_leaf = proof.leaf();
                    let mut new_siblings = proof.take_siblings();
                    // We need to reverse the siblings
                    siblings.reverse();
                    new_siblings.append(&mut siblings);
                    SparseMerkleProof::new(proof_leaf, new_siblings)
                });

                (update_result, new_proof_opt)
            }
            None => {
                // In that case we couldn't find a child for this node at the nibble's position.
                // We have to traverse down the virtual 4-level tree (which is the compressed
                // representation of the jellyfish merkle tree) to get the closest leaf of the nibble
                // we are looking for.
                let merkle_proof = if with_proof {
                    let (child_key_opt, mut siblings) = internal_node
                        .get_only_child_with_siblings::<H>(tree_cache, &node_key, child_index);

                    let leaf: Option<SparseMerkleLeafNode> = child_key_opt.map(|child_key|
                    {
                        // We should be able to find the node in the case
                        let node = tree_cache.get_node(&child_key).expect("this node should be in the cache");
                        match node {
                            Leaf(leaf_node) => {
                                leaf_node.into()
                            },
                            _ => unreachable!("get_only_child_with_siblings should return a leaf node in that case")
                        }
                    });

                    siblings.reverse();
                    Some(SparseMerkleProof::new(leaf, siblings))
                } else {
                    None
                };

                if let Some(value) = value {
                    // insert
                    let new_child_node_key = node_key.gen_child_node_key(version, child_index);

                    // The Merkle proof doesn't have a leaf
                    (
                        PutResult::Updated(Self::create_leaf_node(
                            new_child_node_key,
                            nibble_iter,
                            value,
                            tree_cache,
                        )?),
                        merkle_proof,
                    )
                } else {
                    // If there was no changes, don't generate a proof
                    (
                        PutResult::NotChanged,
                        if with_proof {
                            Some(SparseMerkleProof::new(None, vec![]))
                        } else {
                            None
                        },
                    )
                }
            }
        };

        // Reuse the current `InternalNode` in memory to create a new internal node.
        let mut children: Children = internal_node.into();
        match put_result {
            PutResult::NotChanged => {
                return Ok((
                    PutResult::NotChanged,
                    if with_proof {
                        Some(SparseMerkleProof::new(None, vec![]))
                    } else {
                        None
                    },
                ));
            }
            PutResult::Updated((_, new_node)) => {
                // update child
                children.insert(
                    child_index,
                    Child::new(new_node.hash::<H>(), version, new_node.node_type()),
                );
            }
            PutResult::Removed => {
                // remove child
                children.remove(child_index);
            }
        }

        // We always delete the existing internal node here because it will not be referenced anyway
        // since this version.
        tree_cache.delete_node(&node_key, false /* is_leaf */);

        let mut it = children.iter();
        if let Some((child_nibble, child)) = it.next() {
            if it.next().is_none() && child.is_leaf() {
                // internal node has only one child left and it's leaf node, replace it with the leaf node
                let child_key = node_key.gen_child_node_key(child.version, child_nibble);
                let child_node = tree_cache.get_node(&child_key)?;
                tree_cache.delete_node(&child_key, true /* is_leaf */);

                node_key.set_version(version);
                tree_cache.put_node(node_key.clone(), child_node.clone())?;
                Ok((PutResult::Updated((node_key, child_node)), merkle_proof))
            } else {
                drop(it);
                let new_internal_node: InternalNode = InternalNode::new(children);

                node_key.set_version(version);

                // Cache this new internal node.
                tree_cache.put_node(node_key.clone(), new_internal_node.clone().into())?;
                Ok((
                    PutResult::Updated((node_key, new_internal_node.into())),
                    merkle_proof,
                ))
            }
        } else {
            // internal node becomes empty, remove it
            Ok((PutResult::Removed, merkle_proof))
        }
    }

    /// Helper function for recursive insertion into the subtree that starts from the
    /// `existing_leaf_node`. Returns the newly inserted node with its
    /// [`NodeKey`](node_type/struct.NodeKey.html).
    fn insert_at_leaf_node(
        &self,
        /* the root of the subtree we are inserting into */
        mut node_key: NodeKey,
        /* the leaf node that we are inserting at */
        existing_leaf_node: LeafNode,
        version: Version,
        /* the nibble iterator of the key hash we are inserting */
        nibble_iter: &mut NibbleIterator,
        value_hash: Option<ValueHash>,
        tree_cache: &mut TreeCache<R>,
        with_proof: bool,
    ) -> Result<(PutResult<(NodeKey, Node)>, Option<SparseMerkleProof<H>>)> {
        // We are inserting a new key that shares a common prefix with the existing leaf node.
        // This check is to make sure that the visited nibble path of the inserted key is a
        // subpath of the existing leaf node's nibble path.
        let mut visited_path = nibble_iter.visited_nibbles();
        let path_to_leaf_node = NibblePath::new(existing_leaf_node.key_hash().0.to_vec());
        let mut path_to_leaf = path_to_leaf_node.nibbles();
        skip_common_prefix(&mut visited_path, &mut path_to_leaf);

        assert!(
            visited_path.is_finished(),
            "Inserting a key at the wrong leaf node (no common prefix - index={})",
            path_to_leaf.visited_nibbles().num_nibbles()
        );

        // We have established that the visited nibble path of the inserted key is a prefix of the
        // leaf node's nibble path. Now, we can check if the unvisited nibble path of the inserted
        // key overlaps with more the leaf node's nibble path.
        let mut path_to_leaf_remaining = path_to_leaf.remaining_nibbles();
        // To do this, we skip the common prefix between the remaining nibbles of the inserted key and
        // and those of the leaf node.
        let common_nibbles = skip_common_prefix(nibble_iter, &mut path_to_leaf_remaining);
        let mut common_nibble_path = nibble_iter.visited_nibbles().collect::<NibblePath>();

        // If we have exhausted the nibble iterator of the inserted key, this means that the
        // inserted key and leaf node have the same path. In this case, we just need to update the
        // value of the leaf node.
        if nibble_iter.is_finished() {
            assert!(path_to_leaf_remaining.is_finished());
            tree_cache.delete_node(&node_key, true /* is_leaf */);

            let merkle_proof = if with_proof {
                Some(SparseMerkleProof::new(
                    Some(existing_leaf_node.into()),
                    vec![],
                ))
            } else {
                None
            };

            if let Some(value_hash) = value_hash {
                // The new leaf node will have the same nibble_path with a new version as node_key.
                node_key.set_version(version);
                // Create the new leaf node with the same address but new blob content.
                return Ok((
                    PutResult::Updated(Self::create_leaf_node(
                        node_key,
                        nibble_iter,
                        value_hash,
                        tree_cache,
                    )?),
                    merkle_proof,
                ));
            } else {
                // deleted
                return Ok((PutResult::Removed, merkle_proof));
            };
        }

        // If skipping the common prefix leaves us with some remaining nibbles, this means that the
        // two nibble paths do overlap, but are not identical. In this case, we need to create an internal
        // node to represent the common prefix, and two leaf nodes to represent each leaves.
        if let Some(value) = value_hash {
            tree_cache.delete_node(&node_key, true /* is_leaf */);

            // 2.2. both are unfinished(They have keys with same length so it's impossible to have one
            // finished and the other not). This means the incoming key forks at some point between the
            // position where step 1 ends and the last nibble, inclusive. Then create a seris of
            // internal nodes the number of which equals to the length of the extra part of the
            // common prefix in step 2, a new leaf node for the incoming key, and update the
            // [`NodeKey`] of existing leaf node. We create new internal nodes in a bottom-up
            // order.
            let existing_leaf_index = path_to_leaf_remaining.next().expect("Ran out of nibbles");
            let new_leaf_index = nibble_iter.next().expect("Ran out of nibbles");
            assert_ne!(existing_leaf_index, new_leaf_index);

            let mut children = Children::new();
            children.insert(
                existing_leaf_index,
                Child::new(existing_leaf_node.hash::<H>(), version, NodeType::Leaf),
            );
            node_key = NodeKey::new(version, common_nibble_path.clone());
            tree_cache.put_node(
                node_key.gen_child_node_key(version, existing_leaf_index),
                existing_leaf_node.clone().into(),
            )?;

            let (_, new_leaf_node) = Self::create_leaf_node(
                node_key.gen_child_node_key(version, new_leaf_index),
                nibble_iter,
                value,
                tree_cache,
            )?;
            children.insert(
                new_leaf_index,
                Child::new(new_leaf_node.hash::<H>(), version, NodeType::Leaf),
            );

            let internal_node = InternalNode::new(children);
            let mut next_internal_node = internal_node.clone();
            tree_cache.put_node(node_key.clone(), internal_node.into())?;

            for _i in 0..common_nibbles {
                // Pop a nibble from the end of path.
                let nibble = common_nibble_path
                    .pop()
                    .expect("Common nibble_path below internal node ran out of nibble");
                node_key = NodeKey::new(version, common_nibble_path.clone());
                let mut children = Children::new();
                children.insert(
                    nibble,
                    Child::new(
                        next_internal_node.hash::<H>(),
                        version,
                        next_internal_node.node_type(),
                    ),
                );
                let internal_node = InternalNode::new(children);
                next_internal_node = internal_node.clone();
                tree_cache.put_node(node_key.clone(), internal_node.into())?;
            }

            Ok((
                PutResult::Updated((node_key, next_internal_node.into())),
                if with_proof {
                    Some(SparseMerkleProof::new(
                        Some(existing_leaf_node.into()),
                        vec![],
                    ))
                } else {
                    None
                },
            ))
        } else {
            // delete not found
            Ok((
                PutResult::NotChanged,
                if with_proof {
                    Some(SparseMerkleProof::new(None, vec![]))
                } else {
                    None
                },
            ))
        }
    }

    /// Helper function for creating leaf nodes. Returns the newly created leaf node.
    fn create_leaf_node(
        node_key: NodeKey,
        nibble_iter: &NibbleIterator,
        value_hash: ValueHash,
        tree_cache: &mut TreeCache<R>,
    ) -> Result<(NodeKey, Node)> {
        // Get the underlying bytes of nibble_iter which must be a key, i.e., hashed account address
        // with `HashValue::LENGTH` bytes.
        let new_leaf_node = Node::new_leaf(
            KeyHash(
                nibble_iter
                    .get_nibble_path()
                    .bytes()
                    .try_into()
                    .expect("LeafNode must have full nibble path."),
            ),
            value_hash,
        );

        tree_cache.put_node(node_key.clone(), new_leaf_node.clone())?;
        Ok((node_key, new_leaf_node))
    }

    /// Returns the value (if applicable) and the corresponding merkle proof.
    pub fn get_with_proof(
        &self,
        key: KeyHash,
        version: Version,
    ) -> Result<(Option<OwnedValue>, SparseMerkleProof<H>)> {
        // Empty tree just returns proof with no sibling hash.
        let mut next_node_key = NodeKey::new_empty_path(version);
        let mut siblings: Vec<SparseMerkleNode> = vec![];
        let nibble_path = NibblePath::new(key.0.to_vec());
        let mut nibble_iter = nibble_path.nibbles();

        // We limit the number of loops here deliberately to avoid potential cyclic graph bugs
        // in the tree structure.
        for nibble_depth in 0..=ROOT_NIBBLE_HEIGHT {
            let next_node = self.reader.get_node(&next_node_key).map_err(|err| {
                if nibble_depth == 0 {
                    anyhow::anyhow!(MissingRootError { version })
                } else {
                    err
                }
            })?;
            match next_node {
                Node::Internal(internal_node) => {
                    let queried_child_index = nibble_iter
                        .next()
                        .ok_or_else(|| format_err!("ran out of nibbles"))?;

                    let (child_node_key, mut siblings_in_internal) = internal_node
                        .get_only_child_with_siblings::<H>(
                            self.reader,
                            &next_node_key,
                            queried_child_index,
                        );

                    siblings.append(&mut siblings_in_internal);
                    next_node_key = match child_node_key {
                        Some(node_key) => node_key,
                        None => {
                            return Ok((
                                None,
                                SparseMerkleProof::new(None, {
                                    siblings.reverse();
                                    siblings
                                }),
                            ))
                        }
                    };
                }
                Node::Leaf(leaf_node) => {
                    return Ok((
                        if leaf_node.key_hash() == key {
                            Some(self.reader.get_value(version, leaf_node.key_hash())?)
                        } else {
                            None
                        },
                        SparseMerkleProof::new(Some(leaf_node.into()), {
                            siblings.reverse();
                            siblings
                        }),
                    ));
                }
                Node::Null => {
                    if nibble_depth == 0 {
                        return Ok((None, SparseMerkleProof::new(None, vec![])));
                    } else {
                        bail!(
                            "Non-root null node exists with node key {:?}",
                            next_node_key
                        );
                    }
                }
            }
        }
        bail!("Jellyfish Merkle tree has cyclic graph inside.");
    }

    fn search_closest_extreme_node(
        &self,
        version: Version,
        extreme: Extreme,
        to: NibblePath,
        parents: Vec<InternalNode>,
    ) -> Result<Option<KeyHash>> {
        fn neighbor_nibble(
            node: &InternalNode,
            child_index: Nibble,
            extreme: Extreme,
        ) -> Option<(Nibble, Version)> {
            match extreme {
                // Rightmost left neighbor
                Extreme::Left => node
                    .children_unsorted()
                    .filter(|(nibble, _)| nibble < &child_index)
                    .max_by_key(|(nibble, _)| *nibble)
                    .map(|p| (p.0, p.1.version)),
                // Leftmost right neighbor
                Extreme::Right => node
                    .children_unsorted()
                    .filter(|(nibble, _)| nibble > &child_index)
                    .min_by_key(|(nibble, _)| *nibble)
                    .map(|p| (p.0, p.1.version)),
            }
        }
        let mut parents = parents;
        let mut path = to;

        while let (Some(index), Some(parent)) = (path.pop(), parents.pop()) {
            if let Some((neighbor, found_version)) = neighbor_nibble(&parent, index, extreme) {
                // nibble path will represent the left nibble path. this is currently at
                // the parent of the leaf for `key`
                path.push(neighbor);
                return Ok(Some(self.get_extreme_key_hash(
                    version,
                    NodeKey::new(found_version, path.clone()),
                    path.num_nibbles(),
                    extreme.opposite(),
                )?));
            }
        }
        Ok(None)
    }

    // given a search_key,
    fn search_for_closest_node(
        &self,
        version: Version,
        search_key: KeyHash,
    ) -> Result<SearchResult> {
        let search_path = NibblePath::new(search_key.0.to_vec());
        let mut search_nibbles = search_path.nibbles();
        let mut next_node_key = NodeKey::new_empty_path(version);
        let mut internal_nodes = vec![];

        for nibble_depth in 0..=ROOT_NIBBLE_HEIGHT {
            let next_node = self.reader.get_node(&next_node_key).map_err(|err| {
                if nibble_depth == 0 {
                    anyhow::anyhow!(MissingRootError { version })
                } else {
                    err
                }
            })?;

            match next_node {
                Node::Internal(node) => {
                    internal_nodes.push(node.clone());
                    let queried_child_index = search_nibbles
                        .next()
                        .ok_or_else(|| format_err!("ran out of nibbles"))?;

                    let child_node_key =
                        node.get_only_child_without_siblings(&next_node_key, queried_child_index);

                    match child_node_key {
                        Some(node_key) => {
                            next_node_key = node_key;
                        }
                        None => {
                            return Ok(SearchResult::FoundInternal {
                                path_to_internal: search_nibbles
                                    .visited_nibbles()
                                    .get_nibble_path(),
                                parents: internal_nodes,
                            });
                        }
                    }
                }
                Node::Leaf(node) => {
                    let key_hash = node.key_hash();
                    return Ok(SearchResult::FoundLeaf {
                        ordering: key_hash.cmp(&search_key),
                        leaf_hash: key_hash,
                        path_to_leaf: search_nibbles.visited_nibbles().get_nibble_path(),
                        parents: internal_nodes,
                    });
                }
                Node::Null => {
                    if nibble_depth == 0 {
                        bail!(
                            "Cannot manufacture nonexistence proof by exclusion for the empty tree"
                        );
                    } else {
                        bail!(
                            "Non-root null node exists with node key {:?}",
                            next_node_key
                        );
                    }
                }
            }
        }

        bail!("Jellyfish Merkle tree has cyclic graph inside.");
    }

    fn get_bounding_path(
        &self,
        search_key: KeyHash,
        version: Version,
    ) -> Result<(Option<KeyHash>, Option<KeyHash>)> {
        let search_result = self.search_for_closest_node(version, search_key)?;

        match search_result {
            SearchResult::FoundLeaf {
                ordering,
                leaf_hash,
                path_to_leaf,
                parents,
            } => {
                match ordering {
                    Ordering::Less => {
                        // found the closest leaf to the left of the search key.
                        // find the other bound (the leftmost right keyhash)
                        let leftmost_right_keyhash = self.search_closest_extreme_node(
                            version,
                            Extreme::Right,
                            path_to_leaf,
                            parents,
                        )?;

                        Ok((Some(leaf_hash), leftmost_right_keyhash))
                    }
                    Ordering::Greater => {
                        // found the closest leaf to the right of the search key
                        let rightmost_left_keyhash = self.search_closest_extreme_node(
                            version,
                            Extreme::Left,
                            path_to_leaf,
                            parents,
                        )?;

                        Ok((rightmost_left_keyhash, Some(leaf_hash)))
                    }
                    Ordering::Equal => {
                        bail!("found exact key when searching for bounding path for nonexistence proof")
                    }
                }
            }
            SearchResult::FoundInternal {
                path_to_internal,
                parents,
            } => {
                let leftmost_right_keyhash = self.search_closest_extreme_node(
                    version,
                    Extreme::Right,
                    path_to_internal.clone(),
                    parents.clone(),
                )?;
                let rightmost_left_keyhash = self.search_closest_extreme_node(
                    version,
                    Extreme::Left,
                    path_to_internal,
                    parents,
                )?;

                Ok((rightmost_left_keyhash, leftmost_right_keyhash))
            }
        }
    }

    /// Returns the value (if applicable) and the corresponding merkle proof.
    pub fn get_with_exclusion_proof(
        &self,
        key_hash: KeyHash,
        version: Version,
    ) -> Result<Result<(OwnedValue, SparseMerkleProof<H>), ExclusionProof<H>>> {
        // Optimistically attempt get_with_proof, if that succeeds, we're done.
        if let (Some(value), proof) = self.get_with_proof(key_hash, version)? {
            return Ok(Ok((value, proof)));
        }

        // Otherwise, we know this key doesn't exist, so construct an exclusion proof.

        // first, find out what are its bounding path, i.e. the greatest key that is strictly less
        // than the non-present search key and/or the smallest key that is strictly greater than
        // the search key.
        let (left_bound, right_bound) = self.get_bounding_path(key_hash, version)?;

        match (left_bound, right_bound) {
            (Some(left_bound), Some(right_bound)) => {
                let left_proof = self.get_with_proof(left_bound, version)?.1;
                let right_proof = self.get_with_proof(right_bound, version)?.1;

                Ok(Err(ExclusionProof::Middle {
                    rightmost_left_proof: left_proof,
                    leftmost_right_proof: right_proof,
                }))
            }
            (Some(left_bound), None) => {
                let left_proof = self.get_with_proof(left_bound, version)?.1;
                Ok(Err(ExclusionProof::Rightmost {
                    rightmost_left_proof: left_proof,
                }))
            }
            (None, Some(right_bound)) => {
                let right_proof = self.get_with_proof(right_bound, version)?.1;
                Ok(Err(ExclusionProof::Leftmost {
                    leftmost_right_proof: right_proof,
                }))
            }
            _ => bail!("Invalid exclusion proof"),
        }
    }

    fn get_extreme_key_hash(
        &self,
        version: Version,
        mut node_key: NodeKey,
        nibble_depth: usize,
        extreme: Extreme,
    ) -> Result<KeyHash> {
        // Depending on the extreme specified, get either the least nibble or the most nibble
        let min_or_max = |internal_node: &InternalNode| {
            match extreme {
                Extreme::Left => internal_node.children_unsorted().min_by_key(|c| c.0),
                Extreme::Right => internal_node.children_unsorted().max_by_key(|c| c.0),
            }
            .map(|(nibble, _)| nibble)
        };

        for nibble_depth in nibble_depth..=ROOT_NIBBLE_HEIGHT {
            let node = self.reader.get_node(&node_key).map_err(|err| {
                if nibble_depth == 0 {
                    anyhow::anyhow!(MissingRootError { version })
                } else {
                    err
                }
            })?;
            match node {
                Node::Internal(internal_node) => {
                    // Find the leftmost nibble in the children
                    let queried_child_index =
                        min_or_max(&internal_node).expect("a child always exists");
                    let child_node_key = internal_node
                        .get_only_child_without_siblings(&node_key, queried_child_index);
                    // Proceed downwards
                    node_key = match child_node_key {
                        Some(node_key) => node_key,
                        None => {
                            bail!("Internal node has no children");
                        }
                    };
                }
                Node::Leaf(leaf_node) => {
                    return Ok(leaf_node.key_hash());
                }
                Node::Null => bail!("Null node cannot have children"),
            }
        }
        bail!("Jellyfish Merkle tree has cyclic graph inside.");
    }

    fn get_without_proof(&self, key: KeyHash, version: Version) -> Result<Option<OwnedValue>> {
        self.reader.get_value_option(version, key)
    }

    /// Gets the proof that shows a list of keys up to `rightmost_key_to_prove` exist at `version`.
    pub fn get_range_proof(
        &self,
        rightmost_key_to_prove: KeyHash,
        version: Version,
    ) -> Result<SparseMerkleRangeProof<H>> {
        let (account, proof) = self.get_with_proof(rightmost_key_to_prove, version)?;
        ensure!(account.is_some(), "rightmost_key_to_prove must exist.");

        let siblings = proof
            .siblings()
            .iter()
            .rev()
            .zip(rightmost_key_to_prove.0.iter_bits())
            .filter_map(|(sibling, bit)| {
                // We only need to keep the siblings on the right.
                if !bit {
                    Some(*sibling)
                } else {
                    None
                }
            })
            .rev()
            .collect();
        Ok(SparseMerkleRangeProof::new(siblings))
    }

    /// Returns the value (if applicable), without any proof.
    ///
    /// Equivalent to [`get_with_proof`](JellyfishMerkleTree::get_with_proof) and dropping the
    /// proof, but more efficient.
    pub fn get(&self, key: KeyHash, version: Version) -> Result<Option<OwnedValue>> {
        self.get_without_proof(key, version)
    }

    fn get_root_node(&self, version: Version) -> Result<Node> {
        self.get_root_node_option(version)?
            .ok_or_else(|| format_err!("Root node not found for version {}.", version))
    }

    pub(crate) fn get_root_node_option(&self, version: Version) -> Result<Option<Node>> {
        let root_node_key = NodeKey::new_empty_path(version);
        self.reader.get_node_option(&root_node_key)
    }

    pub fn get_root_hash(&self, version: Version) -> Result<RootHash> {
        self.get_root_node(version).map(|n| RootHash(n.hash::<H>()))
    }

    pub fn get_root_hash_option(&self, version: Version) -> Result<Option<RootHash>> {
        Ok(self
            .get_root_node_option(version)?
            .map(|n| RootHash(n.hash::<H>())))
    }

    // TODO: should this be public? seems coupled to tests?
    pub fn get_leaf_count(&self, version: Version) -> Result<usize> {
        self.get_root_node(version).map(|n| n.leaf_count())
    }
}

/// The result of putting a single key-value pair into the tree, or deleting a key.
enum PutResult<T> {
    // Put a key-value pair successfully.
    Updated(T),
    // Deleted a key successfully.
    Removed,
    // Key to delete not found.
    NotChanged,
}

/// A proof of non-existence by exclusion between two adjacent neighbors.
#[derive(Debug)]
pub enum ExclusionProof<H: SimpleHasher> {
    Leftmost {
        leftmost_right_proof: SparseMerkleProof<H>,
    },
    Middle {
        leftmost_right_proof: SparseMerkleProof<H>,
        rightmost_left_proof: SparseMerkleProof<H>,
    },
    Rightmost {
        rightmost_left_proof: SparseMerkleProof<H>,
    },
}

#[derive(Debug, Clone, Copy)]
enum Extreme {
    Left,
    Right,
}

impl Extreme {
    fn opposite(&self) -> Self {
        match self {
            Extreme::Left => Extreme::Right,
            Extreme::Right => Extreme::Left,
        }
    }
}

#[derive(Debug)]
enum SearchResult {
    FoundLeaf {
        ordering: Ordering,
        leaf_hash: KeyHash,
        path_to_leaf: NibblePath,
        parents: Vec<InternalNode>,
    },
    FoundInternal {
        path_to_internal: NibblePath,
        parents: Vec<InternalNode>,
    },
}