jmt/
node_type.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

//! Node types of [`JellyfishMerkleTree`](crate::JellyfishMerkleTree)
//!
//! This module defines two types of Jellyfish Merkle tree nodes: [`InternalNode`]
//! and [`LeafNode`] as building blocks of a 256-bit
//! [`JellyfishMerkleTree`](crate::JellyfishMerkleTree). [`InternalNode`] represents a 4-level
//! binary tree to optimize for IOPS: it compresses a tree with 31 nodes into one node with 16
//! chidren at the lowest level. [`LeafNode`] stores the full key and the value associated.
use crate::storage::TreeReader;

use crate::SimpleHasher;
use alloc::format;
use alloc::vec::Vec;
use alloc::{boxed::Box, vec};
use anyhow::Context;
use borsh::{BorshDeserialize, BorshSerialize};
use num_derive::{FromPrimitive, ToPrimitive};
#[cfg(any(test))]
use proptest::prelude::*;
#[cfg(any(test))]
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};

use crate::proof::SparseMerkleNode;
use crate::{
    types::{
        nibble::{nibble_path::NibblePath, Nibble},
        proof::{SparseMerkleInternalNode, SparseMerkleLeafNode},
        Version,
    },
    KeyHash, ValueHash, SPARSE_MERKLE_PLACEHOLDER_HASH,
};

/// The unique key of each node.
#[derive(
    Clone,
    Debug,
    Hash,
    Eq,
    PartialEq,
    Ord,
    PartialOrd,
    Serialize,
    Deserialize,
    borsh::BorshSerialize,
    borsh::BorshDeserialize,
)]
#[cfg_attr(any(test), derive(Arbitrary))]
pub struct NodeKey {
    // The version at which the node is created.
    version: Version,
    // The nibble path this node represents in the tree.
    nibble_path: NibblePath,
}

impl NodeKey {
    /// Creates a new `NodeKey`.
    pub fn new(version: Version, nibble_path: NibblePath) -> Self {
        Self {
            version,
            nibble_path,
        }
    }

    /// A shortcut to generate a node key consisting of a version and an empty nibble path.
    pub(crate) fn new_empty_path(version: Version) -> Self {
        Self::new(version, NibblePath::new(vec![]))
    }

    /// Gets the version.
    pub fn version(&self) -> Version {
        self.version
    }

    /// Gets the nibble path.
    pub fn nibble_path(&self) -> &NibblePath {
        &self.nibble_path
    }

    /// Generates a child node key based on this node key.
    pub(crate) fn gen_child_node_key(&self, version: Version, n: Nibble) -> Self {
        let mut node_nibble_path = self.nibble_path().clone();
        node_nibble_path.push(n);
        Self::new(version, node_nibble_path)
    }

    /// Generates parent node key at the same version based on this node key.
    pub(crate) fn gen_parent_node_key(&self) -> Self {
        let mut node_nibble_path = self.nibble_path().clone();
        assert!(
            node_nibble_path.pop().is_some(),
            "Current node key is root.",
        );
        Self::new(self.version, node_nibble_path)
    }

    /// Sets the version to the given version.
    pub(crate) fn set_version(&mut self, version: Version) {
        self.version = version;
    }
}

#[derive(
    Clone,
    Debug,
    Eq,
    PartialEq,
    borsh::BorshSerialize,
    borsh::BorshDeserialize,
    Serialize,
    Deserialize,
)]
pub enum NodeType {
    Leaf,
    Internal { leaf_count: usize },
}

#[cfg(any(test))]
impl Arbitrary for NodeType {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: ()) -> Self::Strategy {
        prop_oneof![
            Just(NodeType::Leaf),
            (2..100usize).prop_map(|leaf_count| NodeType::Internal { leaf_count })
        ]
        .boxed()
    }
}

/// Each child of [`InternalNode`] encapsulates a nibble forking at this node.
#[derive(
    Clone,
    Debug,
    Eq,
    PartialEq,
    borsh::BorshSerialize,
    borsh::BorshDeserialize,
    Serialize,
    Deserialize,
)]
#[cfg_attr(any(test), derive(Arbitrary))]
pub struct Child {
    /// The hash value of this child node.
    pub hash: [u8; 32],
    /// `version`, the `nibble_path` of the ['NodeKey`] of this [`InternalNode`] the child belongs
    /// to and the child's index constitute the [`NodeKey`] to uniquely identify this child node
    /// from the storage. Used by `[`NodeKey::gen_child_node_key`].
    pub version: Version,
    /// Indicates if the child is a leaf, or if it's an internal node, the total number of leaves
    /// under it.
    pub node_type: NodeType,
}

impl Child {
    pub fn new(hash: [u8; 32], version: Version, node_type: NodeType) -> Self {
        Self {
            hash,
            version,
            node_type,
        }
    }

    pub fn is_leaf(&self) -> bool {
        matches!(self.node_type, NodeType::Leaf)
    }

    pub fn leaf_count(&self) -> usize {
        match self.node_type {
            NodeType::Leaf => 1,
            NodeType::Internal { leaf_count } => leaf_count,
        }
    }
}

/// [`Children`] is just a collection of children belonging to a [`InternalNode`], indexed from 0 to
/// 15, inclusive.
#[derive(
    Debug,
    Clone,
    PartialEq,
    Eq,
    Default,
    borsh::BorshSerialize,
    borsh::BorshDeserialize,
    Serialize,
    Deserialize,
)]
pub struct Children {
    /// The actual children. We box this array to avoid stack overflows, since the space consumed
    /// is somewhat large
    children: Box<[Option<Child>; 16]>,
    num_children: usize,
}

#[cfg(any(test))]
impl Arbitrary for Children {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
        (any::<Box<[Option<Child>; 16]>>().prop_map(|children| {
            let num_children = children.iter().filter(|child| child.is_some()).count();
            Self {
                children,
                num_children,
            }
        }))
        .boxed()
    }
}

impl Children {
    /// Create an empty set of children.
    pub fn new() -> Self {
        Default::default()
    }

    /// Insert a new child. Insert is guaranteed not to allocate.
    pub fn insert(&mut self, nibble: Nibble, child: Child) {
        let idx = nibble.as_usize();
        if self.children[idx].is_none() {
            self.num_children += 1;
        }
        self.children[idx] = Some(child);
    }

    /// Get the child at the provided nibble.
    pub fn get(&self, nibble: Nibble) -> &Option<Child> {
        &self.children[nibble.as_usize()]
    }

    /// Check if the struct contains any children.
    pub fn is_empty(&self) -> bool {
        self.num_children == 0
    }

    /// Remove the child at the provided nibble.
    pub fn remove(&mut self, nibble: Nibble) {
        let idx = nibble.as_usize();
        if self.children[idx].is_some() {
            self.num_children -= 1;
        }
        self.children[idx] = None;
    }

    /// Returns a (possibly unsorted) iterator over the children.
    pub fn values(&self) -> impl Iterator<Item = &Child> {
        self.children.iter().filter_map(|child| child.as_ref())
    }

    /// Returns a (possibly unsorted) iterator over the children and their respective Nibbles.
    pub fn iter(&self) -> impl Iterator<Item = (Nibble, &Child)> {
        self.iter_sorted()
    }

    /// Returns a (possibly unsorted) mutable iterator over the children, also yielding their respective nibbles.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (Nibble, &mut Child)> {
        self.children
            .iter_mut()
            .enumerate()
            .filter_map(|(nibble, child)| {
                if let Some(child) = child {
                    Some((Nibble::from(nibble as u8), child))
                } else {
                    None
                }
            })
    }

    /// Returns the number of children.
    pub fn num_children(&self) -> usize {
        self.num_children
    }

    /// Returns an iterator that yields the children and their respective Nibbles in sorted order.
    pub fn iter_sorted(&self) -> impl Iterator<Item = (Nibble, &Child)> {
        self.children
            .iter()
            .enumerate()
            .filter_map(|(nibble, child)| {
                if let Some(child) = child {
                    Some((Nibble::from(nibble as u8), child))
                } else {
                    None
                }
            })
    }
}

/// Represents a 4-level subtree with 16 children at the bottom level. Theoretically, this reduces
/// IOPS to query a tree by 4x since we compress 4 levels in a standard Merkle tree into 1 node.
/// Though we choose the same internal node structure as that of Patricia Merkle tree, the root hash
/// computation logic is similar to a 4-level sparse Merkle tree except for some customizations. See
/// the `CryptoHash` trait implementation below for details.
#[derive(
    Clone,
    Debug,
    Eq,
    PartialEq,
    Serialize,
    Deserialize,
    borsh::BorshSerialize,
    borsh::BorshDeserialize,
)]
pub struct InternalNode {
    /// Up to 16 children.
    children: Children,
    /// Total number of leaves under this internal node
    leaf_count: usize,
}

impl SparseMerkleInternalNode {
    fn from<H: SimpleHasher>(internal_node: InternalNode) -> Self {
        let bitmaps = internal_node.generate_bitmaps();
        SparseMerkleInternalNode::new(
            internal_node.merkle_hash::<H>(0, 8, bitmaps),
            internal_node.merkle_hash::<H>(8, 8, bitmaps),
        )
    }
}

/// Computes the hash of internal node according to [`JellyfishTree`](crate::JellyfishTree)
/// data structure in the logical view. `start` and `nibble_height` determine a subtree whose
/// root hash we want to get. For an internal node with 16 children at the bottom level, we compute
/// the root hash of it as if a full binary Merkle tree with 16 leaves as below:
///
/// ```text
///   4 ->              +------ root hash ------+
///                     |                       |
///   3 ->        +---- # ----+           +---- # ----+
///               |           |           |           |
///   2 ->        #           #           #           #
///             /   \       /   \       /   \       /   \
///   1 ->     #     #     #     #     #     #     #     #
///           / \   / \   / \   / \   / \   / \   / \   / \
///   0 ->   0   1 2   3 4   5 6   7 8   9 A   B C   D E   F
///   ^
/// height
/// ```
///
/// As illustrated above, at nibble height 0, `0..F` in hex denote 16 chidren hashes.  Each `#`
/// means the hash of its two direct children, which will be used to generate the hash of its
/// parent with the hash of its sibling. Finally, we can get the hash of this internal node.
///
/// However, if an internal node doesn't have all 16 chidren exist at height 0 but just a few of
/// them, we have a modified hashing rule on top of what is stated above:
/// 1. From top to bottom, a node will be replaced by a leaf child if the subtree rooted at this
/// node has only one child at height 0 and it is a leaf child.
/// 2. From top to bottom, a node will be replaced by the placeholder node if the subtree rooted at
/// this node doesn't have any child at height 0. For example, if an internal node has 3 leaf
/// children at index 0, 3, 8, respectively, and 1 internal node at index C, then the computation
/// graph will be like:
///
/// ```text
///   4 ->              +------ root hash ------+
///                     |                       |
///   3 ->        +---- # ----+           +---- # ----+
///               |           |           |           |
///   2 ->        #           @           8           #
///             /   \                               /   \
///   1 ->     0     3                             #     @
///                                               / \
///   0 ->                                       C   @
///   ^
/// height
/// Note: @ denotes placeholder hash.
/// ```
#[cfg(any(test))]
impl Arbitrary for InternalNode {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: ()) -> Self::Strategy {
        (any::<Children>().prop_filter(
            "InternalNode constructor panics when its only child is a leaf.",
            |children| {
                !(children.num_children() == 1
                    && children.values().next().expect("Must exist.").is_leaf())
            },
        ))
        .prop_map(InternalNode::new)
        .boxed()
    }
}

/// Helper for `InternalNode` implementations. Test if the leaf exaclty has one child within the width range specified
fn has_only_child(width: u8, range_existence_bitmap: u16, range_leaf_bitmap: u16) -> bool {
    width == 1 || (range_existence_bitmap.count_ones() == 1 && range_leaf_bitmap != 0)
}

/// Helper for `InternalNode` implementations. Test if the leaf exactly has one child *at the position n*
///  within the width range specified
fn has_child(
    width: u8,
    range_existence_bitmap: u16,
    n_bitmap: u16,
    range_leaf_bitmap: u16,
) -> bool {
    width == 1 || (range_existence_bitmap == n_bitmap && range_leaf_bitmap != 0)
}

impl InternalNode {
    /// Creates a new Internal node.
    pub fn new(children: Children) -> Self {
        // Assert the internal node must have >= 1 children. If it only has one child, it cannot be
        // a leaf node. Otherwise, the leaf node should be a child of this internal node's parent.
        assert!(!children.is_empty(), "Children must not be empty");
        if children.num_children() == 1 {
            assert!(
                !children
                    .values()
                    .next()
                    .expect("Must have 1 element")
                    .is_leaf(),
                "If there's only one child, it must not be a leaf."
            );
        }

        let leaf_count = Self::sum_leaf_count(&children);
        Self {
            children,
            leaf_count,
        }
    }

    fn sum_leaf_count(children: &Children) -> usize {
        let mut leaf_count = 0;
        for child in children.values() {
            let n = child.leaf_count();
            leaf_count += n;
        }
        leaf_count
    }

    pub fn leaf_count(&self) -> usize {
        self.leaf_count
    }

    pub fn node_type(&self) -> NodeType {
        NodeType::Internal {
            leaf_count: self.leaf_count,
        }
    }

    pub fn hash<H: SimpleHasher>(&self) -> [u8; 32] {
        self.merkle_hash::<H>(
            0,  /* start index */
            16, /* the number of leaves in the subtree of which we want the hash of root */
            self.generate_bitmaps(),
        )
    }

    pub fn children_sorted(&self) -> impl Iterator<Item = (Nibble, &Child)> {
        // Previously this used `.sorted_by_key()` directly on the iterator but this does not appear
        // to be available in itertools (it does not seem to ever have existed???) for unknown
        // reasons. This satisfies the same behavior. ¯\_(ツ)_/¯
        self.children.iter_sorted()
    }

    pub fn children_unsorted(&self) -> impl Iterator<Item = (Nibble, &Child)> {
        self.children.iter()
    }

    /// Gets the `n`-th child.
    pub fn child(&self, n: Nibble) -> Option<&Child> {
        self.children.get(n).as_ref()
    }

    /// Generates `existence_bitmap` and `leaf_bitmap` as a pair of `u16`s: child at index `i`
    /// exists if `existence_bitmap[i]` is set; child at index `i` is leaf node if
    /// `leaf_bitmap[i]` is set.
    pub fn generate_bitmaps(&self) -> (u16, u16) {
        let mut existence_bitmap = 0;
        let mut leaf_bitmap = 0;
        for (nibble, child) in self.children.iter() {
            let i = u8::from(nibble);
            existence_bitmap |= 1u16 << i;
            if child.is_leaf() {
                leaf_bitmap |= 1u16 << i;
            }
        }
        // `leaf_bitmap` must be a subset of `existence_bitmap`.
        assert_eq!(existence_bitmap | leaf_bitmap, existence_bitmap);
        (existence_bitmap, leaf_bitmap)
    }

    /// Given a range [start, start + width), returns the sub-bitmap of that range.
    fn range_bitmaps(start: u8, width: u8, bitmaps: (u16, u16)) -> (u16, u16) {
        assert!(start < 16 && width.count_ones() == 1 && start % width == 0);
        assert!(width <= 16 && (start + width) <= 16);
        // A range with `start == 8` and `width == 4` will generate a mask 0b0000111100000000.
        // use as converting to smaller integer types when 'width == 16'
        let mask = (((1u32 << width) - 1) << start) as u16;
        (bitmaps.0 & mask, bitmaps.1 & mask)
    }

    /// [`build_sibling`] builds the sibling contained in the merkle tree between
    /// [start; start+width) under the internal node (`self`) using the `TreeReader` as
    /// a node reader to get the leaves/internal nodes at the bottom level of this internal node
    fn build_sibling<H: SimpleHasher>(
        &self,
        tree_reader: &impl TreeReader,
        node_key: &NodeKey,
        start: u8,
        width: u8,
        (existence_bitmap, leaf_bitmap): (u16, u16),
    ) -> SparseMerkleNode {
        // Given a bit [start, 1 << nibble_height], return the value of that range.
        let (range_existence_bitmap, range_leaf_bitmap) =
            Self::range_bitmaps(start, width, (existence_bitmap, leaf_bitmap));
        if range_existence_bitmap == 0 {
            // No child under this subtree
            SparseMerkleNode::Null
        } else if has_only_child(width, range_existence_bitmap, range_leaf_bitmap) {
            // Only 1 leaf child under this subtree or reach the lowest level
            let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);

            let child = self
                .child(only_child_index)
                .with_context(|| {
                    format!(
                        "Corrupted internal node: existence_bitmap indicates \
                         the existence of a non-exist child at index {:x}",
                        only_child_index
                    )
                })
                .unwrap();

            let child_node = tree_reader
                .get_node(&node_key.gen_child_node_key(child.version, only_child_index))
                .with_context(|| {
                    format!(
                        "Corruption error: the merkle tree reader supplied cannot find \
                         the child of version {:?} at index {:x}.",
                        child.version, only_child_index
                    )
                })
                .unwrap();

            match child_node {
                Node::Internal(node) => {
                    SparseMerkleNode::Internal(SparseMerkleInternalNode::from::<H>(node))
                }
                Node::Leaf(node) => SparseMerkleNode::Leaf(SparseMerkleLeafNode::from(node)),
                Node::Null => unreachable!("Impossible to get a null node at this location"),
            }
        } else {
            let left_child = self.merkle_hash::<H>(
                start,
                width / 2,
                (range_existence_bitmap, range_leaf_bitmap),
            );
            let right_child = self.merkle_hash::<H>(
                start + width / 2,
                width / 2,
                (range_existence_bitmap, range_leaf_bitmap),
            );
            SparseMerkleNode::Internal(SparseMerkleInternalNode::new(left_child, right_child))
        }
    }

    fn merkle_hash<H: SimpleHasher>(
        &self,
        start: u8,
        width: u8,
        (existence_bitmap, leaf_bitmap): (u16, u16),
    ) -> [u8; 32] {
        // Given a bit [start, 1 << nibble_height], return the value of that range.
        let (range_existence_bitmap, range_leaf_bitmap) =
            Self::range_bitmaps(start, width, (existence_bitmap, leaf_bitmap));
        if range_existence_bitmap == 0 {
            // No child under this subtree
            SPARSE_MERKLE_PLACEHOLDER_HASH
        } else if has_only_child(width, range_existence_bitmap, range_leaf_bitmap) {
            // Only 1 leaf child under this subtree or reach the lowest level
            let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
            self.child(only_child_index)
                .with_context(|| {
                    format!(
                        "Corrupted internal node: existence_bitmap indicates \
                         the existence of a non-exist child at index {:x}",
                        only_child_index
                    )
                })
                .unwrap()
                .hash
        } else {
            let left_child = self.merkle_hash::<H>(
                start,
                width / 2,
                (range_existence_bitmap, range_leaf_bitmap),
            );
            let right_child = self.merkle_hash::<H>(
                start + width / 2,
                width / 2,
                (range_existence_bitmap, range_leaf_bitmap),
            );
            SparseMerkleInternalNode::new(left_child, right_child).hash::<H>()
        }
    }

    /// Gets the child without its corresponding siblings (like using
    /// [`get_only_child_with_siblings`](InternalNode::get_only_child_with_siblings) and dropping the
    /// siblings, but more efficient).
    pub fn get_only_child_without_siblings(
        &self,
        node_key: &NodeKey,
        n: Nibble,
    ) -> Option<NodeKey> {
        let (existence_bitmap, leaf_bitmap) = self.generate_bitmaps();

        // Nibble height from 3 to 0.
        for h in (0..4).rev() {
            // Get the number of children of the internal node that each subtree at this height
            // covers.
            let width = 1 << h;
            let child_half_start = get_child_half_start(n, h);

            let (range_existence_bitmap, range_leaf_bitmap) =
                Self::range_bitmaps(child_half_start, width, (existence_bitmap, leaf_bitmap));

            if range_existence_bitmap == 0 {
                // No child in this range.
                return None;
            } else if has_only_child(width, range_existence_bitmap, range_leaf_bitmap) {
                // Return the only 1 leaf child under this subtree or reach the lowest level
                // Even this leaf child is not the n-th child, it should be returned instead of
                // `None` because it's existence indirectly proves the n-th child doesn't exist.
                // Please read proof format for details.
                let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);

                let only_child_version = self
                    .child(only_child_index)
                    // Should be guaranteed by the self invariants, but these are not easy to express at the moment
                    .with_context(|| {
                        format!(
                            "Corrupted internal node: child_bitmap indicates \
                                     the existence of a non-exist child at index {:x}",
                            only_child_index
                        )
                    })
                    .unwrap()
                    .version;

                return Some(node_key.gen_child_node_key(only_child_version, only_child_index));
            }
        }
        unreachable!("Impossible to get here without returning even at the lowest level.")
    }

    /// Gets the child and its corresponding siblings that are necessary to generate the proof for
    /// the `n`-th child. This function will **either** return the child that matches the nibble n or the only
    /// child in the largest width range pointed by n. If it is an existence proof, the returned child must be the `n`-th
    /// child; otherwise, the returned child may be another child in the same nibble pointed by n.
    /// See inline explanation for details. When calling this function with n = 11
    ///  (node `b` in the following graph), the range at each level is illustrated as a pair of square brackets:
    ///
    /// ```text
    ///     4      [f   e   d   c   b   a   9   8   7   6   5   4   3   2   1   0] -> root level
    ///            ---------------------------------------------------------------
    ///     3      [f   e   d   c   b   a   9   8] [7   6   5   4   3   2   1   0] width = 8
    ///                                  chs <--┘                        shs <--┘
    ///     2      [f   e   d   c] [b   a   9   8] [7   6   5   4] [3   2   1   0] width = 4
    ///                  shs <--┘               └--> chs
    ///     1      [f   e] [d   c] [b   a] [9   8] [7   6] [5   4] [3   2] [1   0] width = 2
    ///                          chs <--┘       └--> shs
    ///     0      [f] [e] [d] [c] [b] [a] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] width = 1
    ///     ^                chs <--┘   └--> shs
    ///     |   MSB|<---------------------- uint 16 ---------------------------->|LSB
    ///  height    chs: `child_half_start`         shs: `sibling_half_start`
    /// ```
    fn get_child_with_siblings_helper<H: SimpleHasher>(
        &self,
        tree_reader: &impl TreeReader,
        node_key: &NodeKey,
        n: Nibble,
        get_only_child: bool,
    ) -> (Option<NodeKey>, Vec<SparseMerkleNode>) {
        let mut siblings: Vec<SparseMerkleNode> = vec![];
        let (existence_bitmap, leaf_bitmap) = self.generate_bitmaps();

        let n_bitmap = 1 << n.as_usize();

        // Nibble height from 3 to 0.
        for h in (0..4).rev() {
            // Get the number of children of the internal node that each subtree at this height
            // covers.
            let width = 1 << h;
            let (child_half_start, sibling_half_start) = get_child_and_sibling_half_start(n, h);
            // Compute the root hash of the subtree rooted at the sibling of `r`.
            siblings.push(self.build_sibling::<H>(
                tree_reader,
                node_key,
                sibling_half_start,
                width,
                (existence_bitmap, leaf_bitmap),
            ));

            let (range_existence_bitmap, range_leaf_bitmap) =
                Self::range_bitmaps(child_half_start, width, (existence_bitmap, leaf_bitmap));

            if range_existence_bitmap == 0 {
                // No child in this range.
                return (None, siblings);
            } else if get_only_child
                && (has_only_child(width, range_existence_bitmap, range_leaf_bitmap))
            {
                // Return the only 1 leaf child under this subtree or reach the lowest level
                // Even this leaf child is not the n-th child, it should be returned instead of
                // `None` because it's existence indirectly proves the n-th child doesn't exist.
                // Please read proof format for details.
                let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
                return (
                    {
                        let only_child_version = self
                            .child(only_child_index)
                            // Should be guaranteed by the self invariants, but these are not easy to express at the moment
                            .with_context(|| {
                                format!(
                                    "Corrupted internal node: child_bitmap indicates \
                                         the existence of a non-exist child at index {:x}",
                                    only_child_index
                                )
                            })
                            .unwrap()
                            .version;
                        Some(node_key.gen_child_node_key(only_child_version, only_child_index))
                    },
                    siblings,
                );
            } else if !get_only_child
                && (has_child(width, range_existence_bitmap, n_bitmap, range_leaf_bitmap))
            {
                // Early return the child in that subtree iff it is the only child and the nibble points
                // to it
                return (
                    {
                        let only_child_version = self
                            .child(n)
                            // Should be guaranteed by the self invariants, but these are not easy to express at the moment
                            .with_context(|| {
                                format!(
                                    "Corrupted internal node: child_bitmap indicates \
                                         the existence of a non-exist child at index {:x}",
                                    n
                                )
                            })
                            .unwrap()
                            .version;
                        Some(node_key.gen_child_node_key(only_child_version, n))
                    },
                    siblings,
                );
            }
        }
        unreachable!("Impossible to get here without returning even at the lowest level.")
    }

    /// [`get_child_with_siblings`] will return the child from this subtree that matches the nibble n in addition
    /// to building the list of its sibblings. This function has the same behavior as [`child`].
    pub(crate) fn get_child_with_siblings<H: SimpleHasher>(
        &self,
        tree_cache: &impl TreeReader,
        node_key: &NodeKey,
        n: Nibble,
    ) -> (Option<NodeKey>, Vec<SparseMerkleNode>) {
        self.get_child_with_siblings_helper::<H>(tree_cache, node_key, n, false)
    }

    /// [`get_only_child_with_siblings`] will **either** return the child that matches the nibble n or the only
    /// child in the largest width range pointed by n (see the helper function [`get_child_with_siblings_helper`] for more information).
    ///
    /// Even this leaf child is not the n-th child, it should be returned instead of
    /// `None` because it's existence indirectly proves the n-th child doesn't exist.
    /// Please read proof format for details.
    pub(crate) fn get_only_child_with_siblings<H: SimpleHasher>(
        &self,
        tree_reader: &impl TreeReader,
        node_key: &NodeKey,
        n: Nibble,
    ) -> (Option<NodeKey>, Vec<SparseMerkleNode>) {
        self.get_child_with_siblings_helper::<H>(tree_reader, node_key, n, true)
    }

    #[cfg(test)]
    pub(crate) fn children(&self) -> &Children {
        &self.children
    }
}

/// Given a nibble, computes the start position of its `child_half_start` and `sibling_half_start`
/// at `height` level.
pub(crate) fn get_child_and_sibling_half_start(n: Nibble, height: u8) -> (u8, u8) {
    // Get the index of the first child belonging to the same subtree whose root, let's say `r` is
    // at `height` that the n-th child belongs to.
    // Note: `child_half_start` will be always equal to `n` at height 0.
    let child_half_start = (0xff << height) & u8::from(n);

    // Get the index of the first child belonging to the subtree whose root is the sibling of `r`
    // at `height`.
    let sibling_half_start = child_half_start ^ (1 << height);

    (child_half_start, sibling_half_start)
}

/// Given a nibble, computes the start position of its `child_half_start` at `height` level.
pub(crate) fn get_child_half_start(n: Nibble, height: u8) -> u8 {
    // Get the index of the first child belonging to the same subtree whose root, let's say `r` is
    // at `height` that the n-th child belongs to.
    // Note: `child_half_start` will be always equal to `n` at height 0.
    (0xff << height) & u8::from(n)
}

/// Represents a key-value pair in the map.
///
/// Note: this does not store the key itself.
#[derive(
    Clone,
    Debug,
    Eq,
    PartialEq,
    Serialize,
    Deserialize,
    borsh::BorshSerialize,
    borsh::BorshDeserialize,
)]
pub struct LeafNode {
    /// The hash of the key for this entry.
    key_hash: KeyHash,
    /// The hash of the value for this entry.
    value_hash: ValueHash,
}

impl LeafNode {
    /// Creates a new leaf node.
    pub fn new(key_hash: KeyHash, value_hash: ValueHash) -> Self {
        Self {
            key_hash,
            value_hash,
        }
    }

    /// Gets the key hash.
    pub fn key_hash(&self) -> KeyHash {
        self.key_hash
    }

    /// Gets the associated value hash.
    pub(crate) fn value_hash(&self) -> ValueHash {
        self.value_hash
    }

    pub fn hash<H: SimpleHasher>(&self) -> [u8; 32] {
        SparseMerkleLeafNode::new(self.key_hash, self.value_hash).hash::<H>()
    }
}

impl From<LeafNode> for SparseMerkleLeafNode {
    fn from(leaf_node: LeafNode) -> Self {
        Self::new(leaf_node.key_hash, leaf_node.value_hash)
    }
}

#[repr(u8)]
#[derive(FromPrimitive, ToPrimitive, BorshDeserialize, BorshSerialize)]
#[borsh(use_discriminant = false)]
enum NodeTag {
    Null = 0,
    Leaf = 1,
    Internal = 2,
}

/// The concrete node type of [`JellyfishMerkleTree`](crate::JellyfishMerkleTree).
#[derive(Clone, Debug, Eq, PartialEq, BorshSerialize, BorshDeserialize, Serialize, Deserialize)]
pub enum Node {
    /// Represents `null`.
    Null,
    /// A wrapper of [`InternalNode`].
    Internal(InternalNode),
    /// A wrapper of [`LeafNode`].
    Leaf(LeafNode),
}

impl From<InternalNode> for Node {
    fn from(node: InternalNode) -> Self {
        Node::Internal(node)
    }
}

impl From<InternalNode> for Children {
    fn from(node: InternalNode) -> Self {
        node.children
    }
}

impl From<LeafNode> for Node {
    fn from(node: LeafNode) -> Self {
        Node::Leaf(node)
    }
}

impl Node {
    /// Creates the [`Null`](Node::Null) variant.
    pub(crate) fn new_null() -> Self {
        Node::Null
    }

    /// Creates the [`Internal`](Node::Internal) variant.
    #[cfg(any(test))]
    pub(crate) fn new_internal(children: Children) -> Self {
        Node::Internal(InternalNode::new(children))
    }

    /// Creates the [`Leaf`](Node::Leaf) variant.
    pub(crate) fn new_leaf(key_hash: KeyHash, value_hash: ValueHash) -> Self {
        Node::Leaf(LeafNode::new(key_hash, value_hash))
    }

    /// Creates the [`Leaf`](Node::Leaf) variant by hashing a raw value.
    #[cfg(any(test))]
    pub(crate) fn leaf_from_value<H: SimpleHasher>(
        key_hash: KeyHash,
        value: impl AsRef<[u8]>,
    ) -> Self {
        Node::Leaf(LeafNode::new(key_hash, ValueHash::with::<H>(value)))
    }

    /// Returns `true` if the node is a leaf node.
    pub(crate) fn is_leaf(&self) -> bool {
        matches!(self, Node::Leaf(_))
    }

    /// Returns `NodeType`
    pub(crate) fn node_type(&self) -> NodeType {
        match self {
            // The returning value will be used to construct a `Child` of a internal node, while an
            // internal node will never have a child of Node::Null.
            Self::Null => unreachable!(),
            Self::Leaf(_) => NodeType::Leaf,
            Self::Internal(n) => n.node_type(),
        }
    }

    /// Returns leaf count if known
    pub(crate) fn leaf_count(&self) -> usize {
        match self {
            Node::Null => 0,
            Node::Leaf(_) => 1,
            Node::Internal(internal_node) => internal_node.leaf_count,
        }
    }

    /// Computes the hash of nodes.
    pub(crate) fn hash<H: SimpleHasher>(&self) -> [u8; 32] {
        match self {
            Node::Null => SPARSE_MERKLE_PLACEHOLDER_HASH,
            Node::Internal(internal_node) => internal_node.hash::<H>(),
            Node::Leaf(leaf_node) => leaf_node.hash::<H>(),
        }
    }
}