jmt/node_type.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
//! Node types of [`JellyfishMerkleTree`](crate::JellyfishMerkleTree)
//!
//! This module defines two types of Jellyfish Merkle tree nodes: [`InternalNode`]
//! and [`LeafNode`] as building blocks of a 256-bit
//! [`JellyfishMerkleTree`](crate::JellyfishMerkleTree). [`InternalNode`] represents a 4-level
//! binary tree to optimize for IOPS: it compresses a tree with 31 nodes into one node with 16
//! chidren at the lowest level. [`LeafNode`] stores the full key and the value associated.
use crate::storage::TreeReader;
use crate::SimpleHasher;
use alloc::format;
use alloc::vec::Vec;
use alloc::{boxed::Box, vec};
use anyhow::Context;
use borsh::{BorshDeserialize, BorshSerialize};
use num_derive::{FromPrimitive, ToPrimitive};
#[cfg(any(test))]
use proptest::prelude::*;
#[cfg(any(test))]
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use crate::proof::SparseMerkleNode;
use crate::{
types::{
nibble::{nibble_path::NibblePath, Nibble},
proof::{SparseMerkleInternalNode, SparseMerkleLeafNode},
Version,
},
KeyHash, ValueHash, SPARSE_MERKLE_PLACEHOLDER_HASH,
};
/// The unique key of each node.
#[derive(
Clone,
Debug,
Hash,
Eq,
PartialEq,
Ord,
PartialOrd,
Serialize,
Deserialize,
borsh::BorshSerialize,
borsh::BorshDeserialize,
)]
#[cfg_attr(any(test), derive(Arbitrary))]
pub struct NodeKey {
// The version at which the node is created.
version: Version,
// The nibble path this node represents in the tree.
nibble_path: NibblePath,
}
impl NodeKey {
/// Creates a new `NodeKey`.
pub fn new(version: Version, nibble_path: NibblePath) -> Self {
Self {
version,
nibble_path,
}
}
/// A shortcut to generate a node key consisting of a version and an empty nibble path.
pub(crate) fn new_empty_path(version: Version) -> Self {
Self::new(version, NibblePath::new(vec![]))
}
/// Gets the version.
pub fn version(&self) -> Version {
self.version
}
/// Gets the nibble path.
pub fn nibble_path(&self) -> &NibblePath {
&self.nibble_path
}
/// Generates a child node key based on this node key.
pub(crate) fn gen_child_node_key(&self, version: Version, n: Nibble) -> Self {
let mut node_nibble_path = self.nibble_path().clone();
node_nibble_path.push(n);
Self::new(version, node_nibble_path)
}
/// Generates parent node key at the same version based on this node key.
pub(crate) fn gen_parent_node_key(&self) -> Self {
let mut node_nibble_path = self.nibble_path().clone();
assert!(
node_nibble_path.pop().is_some(),
"Current node key is root.",
);
Self::new(self.version, node_nibble_path)
}
/// Sets the version to the given version.
pub(crate) fn set_version(&mut self, version: Version) {
self.version = version;
}
}
#[derive(
Clone,
Debug,
Eq,
PartialEq,
borsh::BorshSerialize,
borsh::BorshDeserialize,
Serialize,
Deserialize,
)]
pub enum NodeType {
Leaf,
Internal { leaf_count: usize },
}
#[cfg(any(test))]
impl Arbitrary for NodeType {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: ()) -> Self::Strategy {
prop_oneof![
Just(NodeType::Leaf),
(2..100usize).prop_map(|leaf_count| NodeType::Internal { leaf_count })
]
.boxed()
}
}
/// Each child of [`InternalNode`] encapsulates a nibble forking at this node.
#[derive(
Clone,
Debug,
Eq,
PartialEq,
borsh::BorshSerialize,
borsh::BorshDeserialize,
Serialize,
Deserialize,
)]
#[cfg_attr(any(test), derive(Arbitrary))]
pub struct Child {
/// The hash value of this child node.
pub hash: [u8; 32],
/// `version`, the `nibble_path` of the ['NodeKey`] of this [`InternalNode`] the child belongs
/// to and the child's index constitute the [`NodeKey`] to uniquely identify this child node
/// from the storage. Used by `[`NodeKey::gen_child_node_key`].
pub version: Version,
/// Indicates if the child is a leaf, or if it's an internal node, the total number of leaves
/// under it.
pub node_type: NodeType,
}
impl Child {
pub fn new(hash: [u8; 32], version: Version, node_type: NodeType) -> Self {
Self {
hash,
version,
node_type,
}
}
pub fn is_leaf(&self) -> bool {
matches!(self.node_type, NodeType::Leaf)
}
pub fn leaf_count(&self) -> usize {
match self.node_type {
NodeType::Leaf => 1,
NodeType::Internal { leaf_count } => leaf_count,
}
}
}
/// [`Children`] is just a collection of children belonging to a [`InternalNode`], indexed from 0 to
/// 15, inclusive.
#[derive(
Debug,
Clone,
PartialEq,
Eq,
Default,
borsh::BorshSerialize,
borsh::BorshDeserialize,
Serialize,
Deserialize,
)]
pub struct Children {
/// The actual children. We box this array to avoid stack overflows, since the space consumed
/// is somewhat large
children: Box<[Option<Child>; 16]>,
num_children: usize,
}
#[cfg(any(test))]
impl Arbitrary for Children {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(any::<Box<[Option<Child>; 16]>>().prop_map(|children| {
let num_children = children.iter().filter(|child| child.is_some()).count();
Self {
children,
num_children,
}
}))
.boxed()
}
}
impl Children {
/// Create an empty set of children.
pub fn new() -> Self {
Default::default()
}
/// Insert a new child. Insert is guaranteed not to allocate.
pub fn insert(&mut self, nibble: Nibble, child: Child) {
let idx = nibble.as_usize();
if self.children[idx].is_none() {
self.num_children += 1;
}
self.children[idx] = Some(child);
}
/// Get the child at the provided nibble.
pub fn get(&self, nibble: Nibble) -> &Option<Child> {
&self.children[nibble.as_usize()]
}
/// Check if the struct contains any children.
pub fn is_empty(&self) -> bool {
self.num_children == 0
}
/// Remove the child at the provided nibble.
pub fn remove(&mut self, nibble: Nibble) {
let idx = nibble.as_usize();
if self.children[idx].is_some() {
self.num_children -= 1;
}
self.children[idx] = None;
}
/// Returns a (possibly unsorted) iterator over the children.
pub fn values(&self) -> impl Iterator<Item = &Child> {
self.children.iter().filter_map(|child| child.as_ref())
}
/// Returns a (possibly unsorted) iterator over the children and their respective Nibbles.
pub fn iter(&self) -> impl Iterator<Item = (Nibble, &Child)> {
self.iter_sorted()
}
/// Returns a (possibly unsorted) mutable iterator over the children, also yielding their respective nibbles.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (Nibble, &mut Child)> {
self.children
.iter_mut()
.enumerate()
.filter_map(|(nibble, child)| {
if let Some(child) = child {
Some((Nibble::from(nibble as u8), child))
} else {
None
}
})
}
/// Returns the number of children.
pub fn num_children(&self) -> usize {
self.num_children
}
/// Returns an iterator that yields the children and their respective Nibbles in sorted order.
pub fn iter_sorted(&self) -> impl Iterator<Item = (Nibble, &Child)> {
self.children
.iter()
.enumerate()
.filter_map(|(nibble, child)| {
if let Some(child) = child {
Some((Nibble::from(nibble as u8), child))
} else {
None
}
})
}
}
/// Represents a 4-level subtree with 16 children at the bottom level. Theoretically, this reduces
/// IOPS to query a tree by 4x since we compress 4 levels in a standard Merkle tree into 1 node.
/// Though we choose the same internal node structure as that of Patricia Merkle tree, the root hash
/// computation logic is similar to a 4-level sparse Merkle tree except for some customizations. See
/// the `CryptoHash` trait implementation below for details.
#[derive(
Clone,
Debug,
Eq,
PartialEq,
Serialize,
Deserialize,
borsh::BorshSerialize,
borsh::BorshDeserialize,
)]
pub struct InternalNode {
/// Up to 16 children.
children: Children,
/// Total number of leaves under this internal node
leaf_count: usize,
}
impl SparseMerkleInternalNode {
fn from<H: SimpleHasher>(internal_node: InternalNode) -> Self {
let bitmaps = internal_node.generate_bitmaps();
SparseMerkleInternalNode::new(
internal_node.merkle_hash::<H>(0, 8, bitmaps),
internal_node.merkle_hash::<H>(8, 8, bitmaps),
)
}
}
/// Computes the hash of internal node according to [`JellyfishTree`](crate::JellyfishTree)
/// data structure in the logical view. `start` and `nibble_height` determine a subtree whose
/// root hash we want to get. For an internal node with 16 children at the bottom level, we compute
/// the root hash of it as if a full binary Merkle tree with 16 leaves as below:
///
/// ```text
/// 4 -> +------ root hash ------+
/// | |
/// 3 -> +---- # ----+ +---- # ----+
/// | | | |
/// 2 -> # # # #
/// / \ / \ / \ / \
/// 1 -> # # # # # # # #
/// / \ / \ / \ / \ / \ / \ / \ / \
/// 0 -> 0 1 2 3 4 5 6 7 8 9 A B C D E F
/// ^
/// height
/// ```
///
/// As illustrated above, at nibble height 0, `0..F` in hex denote 16 chidren hashes. Each `#`
/// means the hash of its two direct children, which will be used to generate the hash of its
/// parent with the hash of its sibling. Finally, we can get the hash of this internal node.
///
/// However, if an internal node doesn't have all 16 chidren exist at height 0 but just a few of
/// them, we have a modified hashing rule on top of what is stated above:
/// 1. From top to bottom, a node will be replaced by a leaf child if the subtree rooted at this
/// node has only one child at height 0 and it is a leaf child.
/// 2. From top to bottom, a node will be replaced by the placeholder node if the subtree rooted at
/// this node doesn't have any child at height 0. For example, if an internal node has 3 leaf
/// children at index 0, 3, 8, respectively, and 1 internal node at index C, then the computation
/// graph will be like:
///
/// ```text
/// 4 -> +------ root hash ------+
/// | |
/// 3 -> +---- # ----+ +---- # ----+
/// | | | |
/// 2 -> # @ 8 #
/// / \ / \
/// 1 -> 0 3 # @
/// / \
/// 0 -> C @
/// ^
/// height
/// Note: @ denotes placeholder hash.
/// ```
#[cfg(any(test))]
impl Arbitrary for InternalNode {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_args: ()) -> Self::Strategy {
(any::<Children>().prop_filter(
"InternalNode constructor panics when its only child is a leaf.",
|children| {
!(children.num_children() == 1
&& children.values().next().expect("Must exist.").is_leaf())
},
))
.prop_map(InternalNode::new)
.boxed()
}
}
/// Helper for `InternalNode` implementations. Test if the leaf exaclty has one child within the width range specified
fn has_only_child(width: u8, range_existence_bitmap: u16, range_leaf_bitmap: u16) -> bool {
width == 1 || (range_existence_bitmap.count_ones() == 1 && range_leaf_bitmap != 0)
}
/// Helper for `InternalNode` implementations. Test if the leaf exactly has one child *at the position n*
/// within the width range specified
fn has_child(
width: u8,
range_existence_bitmap: u16,
n_bitmap: u16,
range_leaf_bitmap: u16,
) -> bool {
width == 1 || (range_existence_bitmap == n_bitmap && range_leaf_bitmap != 0)
}
impl InternalNode {
/// Creates a new Internal node.
pub fn new(children: Children) -> Self {
// Assert the internal node must have >= 1 children. If it only has one child, it cannot be
// a leaf node. Otherwise, the leaf node should be a child of this internal node's parent.
assert!(!children.is_empty(), "Children must not be empty");
if children.num_children() == 1 {
assert!(
!children
.values()
.next()
.expect("Must have 1 element")
.is_leaf(),
"If there's only one child, it must not be a leaf."
);
}
let leaf_count = Self::sum_leaf_count(&children);
Self {
children,
leaf_count,
}
}
fn sum_leaf_count(children: &Children) -> usize {
let mut leaf_count = 0;
for child in children.values() {
let n = child.leaf_count();
leaf_count += n;
}
leaf_count
}
pub fn leaf_count(&self) -> usize {
self.leaf_count
}
pub fn node_type(&self) -> NodeType {
NodeType::Internal {
leaf_count: self.leaf_count,
}
}
pub fn hash<H: SimpleHasher>(&self) -> [u8; 32] {
self.merkle_hash::<H>(
0, /* start index */
16, /* the number of leaves in the subtree of which we want the hash of root */
self.generate_bitmaps(),
)
}
pub fn children_sorted(&self) -> impl Iterator<Item = (Nibble, &Child)> {
// Previously this used `.sorted_by_key()` directly on the iterator but this does not appear
// to be available in itertools (it does not seem to ever have existed???) for unknown
// reasons. This satisfies the same behavior. ¯\_(ツ)_/¯
self.children.iter_sorted()
}
pub fn children_unsorted(&self) -> impl Iterator<Item = (Nibble, &Child)> {
self.children.iter()
}
/// Gets the `n`-th child.
pub fn child(&self, n: Nibble) -> Option<&Child> {
self.children.get(n).as_ref()
}
/// Generates `existence_bitmap` and `leaf_bitmap` as a pair of `u16`s: child at index `i`
/// exists if `existence_bitmap[i]` is set; child at index `i` is leaf node if
/// `leaf_bitmap[i]` is set.
pub fn generate_bitmaps(&self) -> (u16, u16) {
let mut existence_bitmap = 0;
let mut leaf_bitmap = 0;
for (nibble, child) in self.children.iter() {
let i = u8::from(nibble);
existence_bitmap |= 1u16 << i;
if child.is_leaf() {
leaf_bitmap |= 1u16 << i;
}
}
// `leaf_bitmap` must be a subset of `existence_bitmap`.
assert_eq!(existence_bitmap | leaf_bitmap, existence_bitmap);
(existence_bitmap, leaf_bitmap)
}
/// Given a range [start, start + width), returns the sub-bitmap of that range.
fn range_bitmaps(start: u8, width: u8, bitmaps: (u16, u16)) -> (u16, u16) {
assert!(start < 16 && width.count_ones() == 1 && start % width == 0);
assert!(width <= 16 && (start + width) <= 16);
// A range with `start == 8` and `width == 4` will generate a mask 0b0000111100000000.
// use as converting to smaller integer types when 'width == 16'
let mask = (((1u32 << width) - 1) << start) as u16;
(bitmaps.0 & mask, bitmaps.1 & mask)
}
/// [`build_sibling`] builds the sibling contained in the merkle tree between
/// [start; start+width) under the internal node (`self`) using the `TreeReader` as
/// a node reader to get the leaves/internal nodes at the bottom level of this internal node
fn build_sibling<H: SimpleHasher>(
&self,
tree_reader: &impl TreeReader,
node_key: &NodeKey,
start: u8,
width: u8,
(existence_bitmap, leaf_bitmap): (u16, u16),
) -> SparseMerkleNode {
// Given a bit [start, 1 << nibble_height], return the value of that range.
let (range_existence_bitmap, range_leaf_bitmap) =
Self::range_bitmaps(start, width, (existence_bitmap, leaf_bitmap));
if range_existence_bitmap == 0 {
// No child under this subtree
SparseMerkleNode::Null
} else if has_only_child(width, range_existence_bitmap, range_leaf_bitmap) {
// Only 1 leaf child under this subtree or reach the lowest level
let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
let child = self
.child(only_child_index)
.with_context(|| {
format!(
"Corrupted internal node: existence_bitmap indicates \
the existence of a non-exist child at index {:x}",
only_child_index
)
})
.unwrap();
let child_node = tree_reader
.get_node(&node_key.gen_child_node_key(child.version, only_child_index))
.with_context(|| {
format!(
"Corruption error: the merkle tree reader supplied cannot find \
the child of version {:?} at index {:x}.",
child.version, only_child_index
)
})
.unwrap();
match child_node {
Node::Internal(node) => {
SparseMerkleNode::Internal(SparseMerkleInternalNode::from::<H>(node))
}
Node::Leaf(node) => SparseMerkleNode::Leaf(SparseMerkleLeafNode::from(node)),
Node::Null => unreachable!("Impossible to get a null node at this location"),
}
} else {
let left_child = self.merkle_hash::<H>(
start,
width / 2,
(range_existence_bitmap, range_leaf_bitmap),
);
let right_child = self.merkle_hash::<H>(
start + width / 2,
width / 2,
(range_existence_bitmap, range_leaf_bitmap),
);
SparseMerkleNode::Internal(SparseMerkleInternalNode::new(left_child, right_child))
}
}
fn merkle_hash<H: SimpleHasher>(
&self,
start: u8,
width: u8,
(existence_bitmap, leaf_bitmap): (u16, u16),
) -> [u8; 32] {
// Given a bit [start, 1 << nibble_height], return the value of that range.
let (range_existence_bitmap, range_leaf_bitmap) =
Self::range_bitmaps(start, width, (existence_bitmap, leaf_bitmap));
if range_existence_bitmap == 0 {
// No child under this subtree
SPARSE_MERKLE_PLACEHOLDER_HASH
} else if has_only_child(width, range_existence_bitmap, range_leaf_bitmap) {
// Only 1 leaf child under this subtree or reach the lowest level
let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
self.child(only_child_index)
.with_context(|| {
format!(
"Corrupted internal node: existence_bitmap indicates \
the existence of a non-exist child at index {:x}",
only_child_index
)
})
.unwrap()
.hash
} else {
let left_child = self.merkle_hash::<H>(
start,
width / 2,
(range_existence_bitmap, range_leaf_bitmap),
);
let right_child = self.merkle_hash::<H>(
start + width / 2,
width / 2,
(range_existence_bitmap, range_leaf_bitmap),
);
SparseMerkleInternalNode::new(left_child, right_child).hash::<H>()
}
}
/// Gets the child without its corresponding siblings (like using
/// [`get_only_child_with_siblings`](InternalNode::get_only_child_with_siblings) and dropping the
/// siblings, but more efficient).
pub fn get_only_child_without_siblings(
&self,
node_key: &NodeKey,
n: Nibble,
) -> Option<NodeKey> {
let (existence_bitmap, leaf_bitmap) = self.generate_bitmaps();
// Nibble height from 3 to 0.
for h in (0..4).rev() {
// Get the number of children of the internal node that each subtree at this height
// covers.
let width = 1 << h;
let child_half_start = get_child_half_start(n, h);
let (range_existence_bitmap, range_leaf_bitmap) =
Self::range_bitmaps(child_half_start, width, (existence_bitmap, leaf_bitmap));
if range_existence_bitmap == 0 {
// No child in this range.
return None;
} else if has_only_child(width, range_existence_bitmap, range_leaf_bitmap) {
// Return the only 1 leaf child under this subtree or reach the lowest level
// Even this leaf child is not the n-th child, it should be returned instead of
// `None` because it's existence indirectly proves the n-th child doesn't exist.
// Please read proof format for details.
let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
let only_child_version = self
.child(only_child_index)
// Should be guaranteed by the self invariants, but these are not easy to express at the moment
.with_context(|| {
format!(
"Corrupted internal node: child_bitmap indicates \
the existence of a non-exist child at index {:x}",
only_child_index
)
})
.unwrap()
.version;
return Some(node_key.gen_child_node_key(only_child_version, only_child_index));
}
}
unreachable!("Impossible to get here without returning even at the lowest level.")
}
/// Gets the child and its corresponding siblings that are necessary to generate the proof for
/// the `n`-th child. This function will **either** return the child that matches the nibble n or the only
/// child in the largest width range pointed by n. If it is an existence proof, the returned child must be the `n`-th
/// child; otherwise, the returned child may be another child in the same nibble pointed by n.
/// See inline explanation for details. When calling this function with n = 11
/// (node `b` in the following graph), the range at each level is illustrated as a pair of square brackets:
///
/// ```text
/// 4 [f e d c b a 9 8 7 6 5 4 3 2 1 0] -> root level
/// ---------------------------------------------------------------
/// 3 [f e d c b a 9 8] [7 6 5 4 3 2 1 0] width = 8
/// chs <--┘ shs <--┘
/// 2 [f e d c] [b a 9 8] [7 6 5 4] [3 2 1 0] width = 4
/// shs <--┘ └--> chs
/// 1 [f e] [d c] [b a] [9 8] [7 6] [5 4] [3 2] [1 0] width = 2
/// chs <--┘ └--> shs
/// 0 [f] [e] [d] [c] [b] [a] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] width = 1
/// ^ chs <--┘ └--> shs
/// | MSB|<---------------------- uint 16 ---------------------------->|LSB
/// height chs: `child_half_start` shs: `sibling_half_start`
/// ```
fn get_child_with_siblings_helper<H: SimpleHasher>(
&self,
tree_reader: &impl TreeReader,
node_key: &NodeKey,
n: Nibble,
get_only_child: bool,
) -> (Option<NodeKey>, Vec<SparseMerkleNode>) {
let mut siblings: Vec<SparseMerkleNode> = vec![];
let (existence_bitmap, leaf_bitmap) = self.generate_bitmaps();
let n_bitmap = 1 << n.as_usize();
// Nibble height from 3 to 0.
for h in (0..4).rev() {
// Get the number of children of the internal node that each subtree at this height
// covers.
let width = 1 << h;
let (child_half_start, sibling_half_start) = get_child_and_sibling_half_start(n, h);
// Compute the root hash of the subtree rooted at the sibling of `r`.
siblings.push(self.build_sibling::<H>(
tree_reader,
node_key,
sibling_half_start,
width,
(existence_bitmap, leaf_bitmap),
));
let (range_existence_bitmap, range_leaf_bitmap) =
Self::range_bitmaps(child_half_start, width, (existence_bitmap, leaf_bitmap));
if range_existence_bitmap == 0 {
// No child in this range.
return (None, siblings);
} else if get_only_child
&& (has_only_child(width, range_existence_bitmap, range_leaf_bitmap))
{
// Return the only 1 leaf child under this subtree or reach the lowest level
// Even this leaf child is not the n-th child, it should be returned instead of
// `None` because it's existence indirectly proves the n-th child doesn't exist.
// Please read proof format for details.
let only_child_index = Nibble::from(range_existence_bitmap.trailing_zeros() as u8);
return (
{
let only_child_version = self
.child(only_child_index)
// Should be guaranteed by the self invariants, but these are not easy to express at the moment
.with_context(|| {
format!(
"Corrupted internal node: child_bitmap indicates \
the existence of a non-exist child at index {:x}",
only_child_index
)
})
.unwrap()
.version;
Some(node_key.gen_child_node_key(only_child_version, only_child_index))
},
siblings,
);
} else if !get_only_child
&& (has_child(width, range_existence_bitmap, n_bitmap, range_leaf_bitmap))
{
// Early return the child in that subtree iff it is the only child and the nibble points
// to it
return (
{
let only_child_version = self
.child(n)
// Should be guaranteed by the self invariants, but these are not easy to express at the moment
.with_context(|| {
format!(
"Corrupted internal node: child_bitmap indicates \
the existence of a non-exist child at index {:x}",
n
)
})
.unwrap()
.version;
Some(node_key.gen_child_node_key(only_child_version, n))
},
siblings,
);
}
}
unreachable!("Impossible to get here without returning even at the lowest level.")
}
/// [`get_child_with_siblings`] will return the child from this subtree that matches the nibble n in addition
/// to building the list of its sibblings. This function has the same behavior as [`child`].
pub(crate) fn get_child_with_siblings<H: SimpleHasher>(
&self,
tree_cache: &impl TreeReader,
node_key: &NodeKey,
n: Nibble,
) -> (Option<NodeKey>, Vec<SparseMerkleNode>) {
self.get_child_with_siblings_helper::<H>(tree_cache, node_key, n, false)
}
/// [`get_only_child_with_siblings`] will **either** return the child that matches the nibble n or the only
/// child in the largest width range pointed by n (see the helper function [`get_child_with_siblings_helper`] for more information).
///
/// Even this leaf child is not the n-th child, it should be returned instead of
/// `None` because it's existence indirectly proves the n-th child doesn't exist.
/// Please read proof format for details.
pub(crate) fn get_only_child_with_siblings<H: SimpleHasher>(
&self,
tree_reader: &impl TreeReader,
node_key: &NodeKey,
n: Nibble,
) -> (Option<NodeKey>, Vec<SparseMerkleNode>) {
self.get_child_with_siblings_helper::<H>(tree_reader, node_key, n, true)
}
#[cfg(test)]
pub(crate) fn children(&self) -> &Children {
&self.children
}
}
/// Given a nibble, computes the start position of its `child_half_start` and `sibling_half_start`
/// at `height` level.
pub(crate) fn get_child_and_sibling_half_start(n: Nibble, height: u8) -> (u8, u8) {
// Get the index of the first child belonging to the same subtree whose root, let's say `r` is
// at `height` that the n-th child belongs to.
// Note: `child_half_start` will be always equal to `n` at height 0.
let child_half_start = (0xff << height) & u8::from(n);
// Get the index of the first child belonging to the subtree whose root is the sibling of `r`
// at `height`.
let sibling_half_start = child_half_start ^ (1 << height);
(child_half_start, sibling_half_start)
}
/// Given a nibble, computes the start position of its `child_half_start` at `height` level.
pub(crate) fn get_child_half_start(n: Nibble, height: u8) -> u8 {
// Get the index of the first child belonging to the same subtree whose root, let's say `r` is
// at `height` that the n-th child belongs to.
// Note: `child_half_start` will be always equal to `n` at height 0.
(0xff << height) & u8::from(n)
}
/// Represents a key-value pair in the map.
///
/// Note: this does not store the key itself.
#[derive(
Clone,
Debug,
Eq,
PartialEq,
Serialize,
Deserialize,
borsh::BorshSerialize,
borsh::BorshDeserialize,
)]
pub struct LeafNode {
/// The hash of the key for this entry.
key_hash: KeyHash,
/// The hash of the value for this entry.
value_hash: ValueHash,
}
impl LeafNode {
/// Creates a new leaf node.
pub fn new(key_hash: KeyHash, value_hash: ValueHash) -> Self {
Self {
key_hash,
value_hash,
}
}
/// Gets the key hash.
pub fn key_hash(&self) -> KeyHash {
self.key_hash
}
/// Gets the associated value hash.
pub(crate) fn value_hash(&self) -> ValueHash {
self.value_hash
}
pub fn hash<H: SimpleHasher>(&self) -> [u8; 32] {
SparseMerkleLeafNode::new(self.key_hash, self.value_hash).hash::<H>()
}
}
impl From<LeafNode> for SparseMerkleLeafNode {
fn from(leaf_node: LeafNode) -> Self {
Self::new(leaf_node.key_hash, leaf_node.value_hash)
}
}
#[repr(u8)]
#[derive(FromPrimitive, ToPrimitive, BorshDeserialize, BorshSerialize)]
#[borsh(use_discriminant = false)]
enum NodeTag {
Null = 0,
Leaf = 1,
Internal = 2,
}
/// The concrete node type of [`JellyfishMerkleTree`](crate::JellyfishMerkleTree).
#[derive(Clone, Debug, Eq, PartialEq, BorshSerialize, BorshDeserialize, Serialize, Deserialize)]
pub enum Node {
/// Represents `null`.
Null,
/// A wrapper of [`InternalNode`].
Internal(InternalNode),
/// A wrapper of [`LeafNode`].
Leaf(LeafNode),
}
impl From<InternalNode> for Node {
fn from(node: InternalNode) -> Self {
Node::Internal(node)
}
}
impl From<InternalNode> for Children {
fn from(node: InternalNode) -> Self {
node.children
}
}
impl From<LeafNode> for Node {
fn from(node: LeafNode) -> Self {
Node::Leaf(node)
}
}
impl Node {
/// Creates the [`Null`](Node::Null) variant.
pub(crate) fn new_null() -> Self {
Node::Null
}
/// Creates the [`Internal`](Node::Internal) variant.
#[cfg(any(test))]
pub(crate) fn new_internal(children: Children) -> Self {
Node::Internal(InternalNode::new(children))
}
/// Creates the [`Leaf`](Node::Leaf) variant.
pub(crate) fn new_leaf(key_hash: KeyHash, value_hash: ValueHash) -> Self {
Node::Leaf(LeafNode::new(key_hash, value_hash))
}
/// Creates the [`Leaf`](Node::Leaf) variant by hashing a raw value.
#[cfg(any(test))]
pub(crate) fn leaf_from_value<H: SimpleHasher>(
key_hash: KeyHash,
value: impl AsRef<[u8]>,
) -> Self {
Node::Leaf(LeafNode::new(key_hash, ValueHash::with::<H>(value)))
}
/// Returns `true` if the node is a leaf node.
pub(crate) fn is_leaf(&self) -> bool {
matches!(self, Node::Leaf(_))
}
/// Returns `NodeType`
pub(crate) fn node_type(&self) -> NodeType {
match self {
// The returning value will be used to construct a `Child` of a internal node, while an
// internal node will never have a child of Node::Null.
Self::Null => unreachable!(),
Self::Leaf(_) => NodeType::Leaf,
Self::Internal(n) => n.node_type(),
}
}
/// Returns leaf count if known
pub(crate) fn leaf_count(&self) -> usize {
match self {
Node::Null => 0,
Node::Leaf(_) => 1,
Node::Internal(internal_node) => internal_node.leaf_count,
}
}
/// Computes the hash of nodes.
pub(crate) fn hash<H: SimpleHasher>(&self) -> [u8; 32] {
match self {
Node::Null => SPARSE_MERKLE_PLACEHOLDER_HASH,
Node::Internal(internal_node) => internal_node.hash::<H>(),
Node::Leaf(leaf_node) => leaf_node.hash::<H>(),
}
}
}