jmt/iterator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
//! This module implements `JellyfishMerkleIterator`. Initialized with a version and a key, the
//! iterator generates all the key-value pairs in this version of the tree, starting from the
//! smallest key that is greater or equal to the given key, by performing a depth first traversal
//! on the tree.
use alloc::{sync::Arc, vec::Vec};
use anyhow::{bail, ensure, format_err, Result};
use crate::{
node_type::{Child, InternalNode, Node, NodeKey},
storage::TreeReader,
types::{
nibble::{nibble_path::NibblePath, Nibble, ROOT_NIBBLE_HEIGHT},
Version,
},
KeyHash, OwnedValue,
};
/// `NodeVisitInfo` keeps track of the status of an internal node during the iteration process. It
/// indicates which ones of its children have been visited.
#[derive(Debug)]
struct NodeVisitInfo {
/// The key to this node.
node_key: NodeKey,
/// The node itself.
node: InternalNode,
/// The bitmap indicating which children exist. It is generated by running
/// `self.node.generate_bitmaps().0` and cached here.
children_bitmap: u16,
/// This integer always has exactly one 1-bit. The position of the 1-bit (from LSB) indicates
/// the next child to visit in the iteration process. All the ones on the left have already
/// been visited. All the chilren on the right (including this one) have not been visited yet.
next_child_to_visit: u16,
}
impl NodeVisitInfo {
/// Constructs a new `NodeVisitInfo` with given node key and node. `next_child_to_visit` will
/// be set to the leftmost child.
fn new(node_key: NodeKey, node: InternalNode) -> Self {
let (children_bitmap, _) = node.generate_bitmaps();
assert!(children_bitmap != 0);
Self {
node_key,
node,
children_bitmap,
next_child_to_visit: 1 << children_bitmap.trailing_zeros(),
}
}
/// Same as `new` but points `next_child_to_visit` to a specific location. If the child
/// corresponding to `next_child_to_visit` does not exist, set it to the next one on the
/// right.
fn new_next_child_to_visit(
node_key: NodeKey,
node: InternalNode,
next_child_to_visit: Nibble,
) -> Self {
let (children_bitmap, _) = node.generate_bitmaps();
let mut next_child_to_visit = 1 << u8::from(next_child_to_visit);
assert!(children_bitmap >= next_child_to_visit);
while next_child_to_visit & children_bitmap == 0 {
next_child_to_visit <<= 1;
}
Self {
node_key,
node,
children_bitmap,
next_child_to_visit,
}
}
/// Whether the next child to visit is the rightmost one.
fn is_rightmost(&self) -> bool {
assert!(self.next_child_to_visit.leading_zeros() >= self.children_bitmap.leading_zeros());
self.next_child_to_visit.leading_zeros() == self.children_bitmap.leading_zeros()
}
/// Advances `next_child_to_visit` to the next child on the right.
fn advance(&mut self) {
assert!(!self.is_rightmost(), "Advancing past rightmost child.");
self.next_child_to_visit <<= 1;
while self.next_child_to_visit & self.children_bitmap == 0 {
self.next_child_to_visit <<= 1;
}
}
}
/// An iterator over all key-value pairs in a [`JellyfishMerkleTree`](crate::JellyfishMerkleTree).
///
/// Initialized with a version and a key, the iterator generates all the
/// key-value pairs in this version of the tree, starting from the smallest key
/// that is greater or equal to the given key, by performing a depth first
/// traversal on the tree.
pub struct JellyfishMerkleIterator<R> {
/// The storage engine from which we can read nodes using node keys.
reader: Arc<R>,
/// The version of the tree this iterator is running on.
version: Version,
/// The stack used for depth first traversal.
parent_stack: Vec<NodeVisitInfo>,
/// Whether the iteration has finished. Usually this can be determined by checking whether
/// `self.parent_stack` is empty. But in case of a tree with a single leaf, we need this
/// additional bit.
done: bool,
}
impl<R> JellyfishMerkleIterator<R>
where
R: TreeReader,
{
/// Constructs a new iterator. This puts the internal state in the correct position, so the
/// following `next` call will yield the smallest key that is greater or equal to
/// `starting_key`.
pub fn new(reader: Arc<R>, version: Version, starting_key: KeyHash) -> Result<Self> {
let mut parent_stack = Vec::new();
let mut done = false;
let mut current_node_key = NodeKey::new_empty_path(version);
let nibble_path = NibblePath::new(starting_key.0.to_vec());
let mut nibble_iter = nibble_path.nibbles();
while let Node::Internal(internal_node) = reader.get_node(¤t_node_key)? {
let child_index = nibble_iter.next().expect("Should have enough nibbles.");
match internal_node.child(child_index) {
Some(child) => {
// If this child exists, we just push the node onto stack and repeat.
parent_stack.push(NodeVisitInfo::new_next_child_to_visit(
current_node_key.clone(),
internal_node.clone(),
child_index,
));
current_node_key =
current_node_key.gen_child_node_key(child.version, child_index);
}
None => {
let (bitmap, _) = internal_node.generate_bitmaps();
if u32::from(u8::from(child_index)) < 15 - bitmap.leading_zeros() {
// If this child does not exist and there's another child on the right, we
// set the child on the right to be the next one to visit.
parent_stack.push(NodeVisitInfo::new_next_child_to_visit(
current_node_key,
internal_node,
child_index,
));
} else {
// Otherwise we have done visiting this node. Go backward and clean up the
// stack.
Self::cleanup_stack(&mut parent_stack);
}
return Ok(Self {
reader,
version,
parent_stack,
done,
});
}
}
}
match reader.get_node(¤t_node_key)? {
Node::Internal(_) => unreachable!("Should have reached the bottom of the tree."),
Node::Leaf(leaf_node) => {
if leaf_node.key_hash() < starting_key {
Self::cleanup_stack(&mut parent_stack);
if parent_stack.is_empty() {
done = true;
}
}
}
Node::Null => done = true,
}
Ok(Self {
reader,
version,
parent_stack,
done,
})
}
fn cleanup_stack(parent_stack: &mut Vec<NodeVisitInfo>) {
while let Some(info) = parent_stack.last_mut() {
if info.is_rightmost() {
parent_stack.pop();
} else {
info.advance();
break;
}
}
}
/// Constructs a new iterator. This puts the internal state in the correct position, so the
/// following `next` call will yield the leaf at `start_idx`.
pub fn new_by_index(reader: Arc<R>, version: Version, start_idx: usize) -> Result<Self> {
let mut parent_stack = Vec::new();
let mut current_node_key = NodeKey::new_empty_path(version);
let mut current_node = reader.get_node(¤t_node_key)?;
let total_leaves = current_node.leaf_count();
if start_idx >= total_leaves {
return Ok(Self {
reader,
version,
parent_stack,
done: true,
});
}
let mut leaves_skipped = 0;
for _ in 0..=ROOT_NIBBLE_HEIGHT {
match current_node {
Node::Null => {
unreachable!("The Node::Null case has already been covered before loop.")
}
Node::Leaf(_) => {
ensure!(
leaves_skipped == start_idx,
"Bug: The leaf should be the exact one we are looking for.",
);
return Ok(Self {
reader,
version,
parent_stack,
done: false,
});
}
Node::Internal(internal_node) => {
let (nibble, child) =
Self::skip_leaves(&internal_node, &mut leaves_skipped, start_idx)?;
let next_node_key = current_node_key.gen_child_node_key(child.version, nibble);
parent_stack.push(NodeVisitInfo::new_next_child_to_visit(
current_node_key,
internal_node,
nibble,
));
current_node_key = next_node_key;
}
};
current_node = reader.get_node(¤t_node_key)?;
}
bail!("Bug: potential infinite loop.");
}
fn skip_leaves<'a>(
internal_node: &'a InternalNode,
leaves_skipped: &mut usize,
target_leaf_idx: usize,
) -> Result<(Nibble, &'a Child)> {
for (nibble, child) in internal_node.children_sorted() {
let child_leaf_count = child.leaf_count();
// n.b. The index is 0-based, so to reach leaf at N, N previous ones need to be skipped.
if *leaves_skipped + child_leaf_count <= target_leaf_idx {
*leaves_skipped += child_leaf_count;
} else {
return Ok((nibble, child));
}
}
bail!("Bug: Internal node has less leaves than expected.");
}
}
impl<R> Iterator for JellyfishMerkleIterator<R>
where
R: TreeReader,
{
type Item = Result<(KeyHash, OwnedValue)>;
fn next(&mut self) -> Option<Self::Item> {
if self.done {
return None;
}
if self.parent_stack.is_empty() {
let root_node_key = NodeKey::new_empty_path(self.version);
match self.reader.get_node(&root_node_key) {
Ok(Node::Leaf(leaf_node)) => {
// This means the entire tree has a single leaf node. The key of this leaf node
// is greater or equal to `starting_key` (otherwise we would have set `done` to
// true in `new`). Return the node and mark `self.done` so next time we return
// None.
self.done = true;
return match self
.reader
.get_value(root_node_key.version(), leaf_node.key_hash())
{
Ok(value) => Some(Ok((leaf_node.key_hash(), value))),
Err(e) => Some(Err(e)),
};
}
Ok(Node::Internal(_)) => {
// This means `starting_key` is bigger than every key in this tree, or we have
// iterated past the last key.
return None;
}
Ok(Node::Null) => unreachable!("We would have set done to true in new."),
Err(err) => return Some(Err(err)),
}
}
loop {
let last_visited_node_info = self
.parent_stack
.last()
.expect("We have checked that self.parent_stack is not empty.");
let child_index =
Nibble::from(last_visited_node_info.next_child_to_visit.trailing_zeros() as u8);
let node_key = last_visited_node_info.node_key.gen_child_node_key(
last_visited_node_info
.node
.child(child_index)
.expect("Child should exist.")
.version,
child_index,
);
match self.reader.get_node(&node_key) {
Ok(Node::Internal(internal_node)) => {
let visit_info = NodeVisitInfo::new(node_key, internal_node);
self.parent_stack.push(visit_info);
}
Ok(Node::Leaf(leaf_node)) => {
return match self
.reader
.get_value(node_key.version(), leaf_node.key_hash())
{
Ok(value) => {
let ret = (leaf_node.key_hash(), value);
Self::cleanup_stack(&mut self.parent_stack);
Some(Ok(ret))
}
Err(e) => Some(Err(e)),
}
}
Ok(Node::Null) => return Some(Err(format_err!("Should not reach a null node."))),
Err(err) => return Some(Err(err)),
}
}
}
}