decaf377_rdsa/batch.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! Performs batch `decaf377-rdsa` signature verification.
//!
//! Batch verification asks whether *all* signatures in some set are valid,
//! rather than asking whether *each* of them is valid. This allows sharing
//! computations among all signature verifications, performing less work overall
//! at the cost of higher latency (the entire batch must complete), complexity of
//! caller code (which must assemble a batch of signatures across work-items),
//! and loss of the ability to easily pinpoint failing signatures.
//!
use std::convert::TryFrom;
use decaf377::{Element, Fr};
use rand_core::{CryptoRng, RngCore};
use crate::{
domain::Sealed, Binding, Error, HStar, Signature, SpendAuth, VerificationKey,
VerificationKeyBytes,
};
// Shim to generate a random 128bit Fr value.
fn gen_128_bits<R: RngCore + CryptoRng>(mut rng: R) -> Fr {
let lo = rng.next_u64() as u128;
let hi = rng.next_u64() as u128;
(lo + (hi << 64)).into()
}
#[derive(Clone, Debug)]
enum Inner {
SpendAuth {
vk_bytes: VerificationKeyBytes<SpendAuth>,
sig: Signature<SpendAuth>,
c: Fr,
},
Binding {
vk_bytes: VerificationKeyBytes<Binding>,
sig: Signature<Binding>,
c: Fr,
},
}
/// A batch verification item.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification API
/// in an async context.
#[derive(Clone, Debug)]
pub struct Item {
inner: Inner,
}
impl<'msg, M: AsRef<[u8]>>
From<(
VerificationKeyBytes<SpendAuth>,
Signature<SpendAuth>,
&'msg M,
)> for Item
{
fn from(
(vk_bytes, sig, msg): (
VerificationKeyBytes<SpendAuth>,
Signature<SpendAuth>,
&'msg M,
),
) -> Self {
// Compute c now to avoid dependency on the msg lifetime.
let c = HStar::default()
.update(&sig.r_bytes()[..])
.update(&vk_bytes.bytes[..])
.update(msg)
.finalize();
Self {
inner: Inner::SpendAuth { vk_bytes, sig, c },
}
}
}
impl<'msg, M: AsRef<[u8]>> From<(VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M)>
for Item
{
fn from(
(vk_bytes, sig, msg): (VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M),
) -> Self {
// Compute c now to avoid dependency on the msg lifetime.
let c = HStar::default()
.update(&sig.r_bytes()[..])
.update(&vk_bytes.bytes[..])
.update(msg)
.finalize();
Self {
inner: Inner::Binding { vk_bytes, sig, c },
}
}
}
impl Item {
/// Perform non-batched verification of this `Item`.
///
/// This is useful (in combination with `Item::clone`) for implementing fallback
/// logic when batch verification fails. In contrast to
/// [`VerificationKey::verify`](crate::VerificationKey::verify), which requires
/// borrowing the message data, the `Item` type is unlinked from the lifetime of
/// the message.
#[allow(non_snake_case)]
pub fn verify_single(self) -> Result<(), Error> {
match self.inner {
Inner::Binding { vk_bytes, sig, c } => VerificationKey::<Binding>::try_from(vk_bytes)
.and_then(|vk| vk.verify_prehashed(&sig, c)),
Inner::SpendAuth { vk_bytes, sig, c } => {
VerificationKey::<SpendAuth>::try_from(vk_bytes)
.and_then(|vk| vk.verify_prehashed(&sig, c))
}
}
}
}
#[derive(Default)]
/// A batch verification context.
pub struct Verifier {
/// Signature data queued for verification.
signatures: Vec<Item>,
}
impl Verifier {
/// Construct a new batch verifier.
pub fn new() -> Verifier {
Verifier::default()
}
/// Queue an Item for verification.
pub fn queue<I: Into<Item>>(&mut self, item: I) {
self.signatures.push(item.into());
}
/// Perform batch verification, returning `Ok(())` if all signatures were
/// valid and `Err` otherwise.
///
/// The batch verification equation is:
///
/// ```ascii
/// h_G * -[sum(z_i * s_i)]P_G + sum([z_i]R_i + [z_i * c_i]VK_i) = 0_G
/// ```
///
/// which we split out into:
///
/// ```ascii
/// h_G * -[sum(z_i * s_i)]P_G + sum([z_i]R_i) + sum([z_i * c_i]VK_i) = 0_G
/// ```
///
/// so that we can use multiscalar multiplication speedups.
///
/// where for each signature i,
/// - VK_i is the verification key;
/// - R_i is the signature's R value;
/// - s_i is the signature's s value;
/// - c_i is the hash of the message and other data;
/// - z_i is a random 128-bit Scalar;
/// - h_G is the cofactor of the group;
/// - P_G is the generator of the subgroup;
///
/// Since `decaf377-rdsa` uses a different generator for each signature
/// domain, we have a separate scalar accumulator for each domain, but we
/// can still amortize computation nicely in one multiscalar multiplication:
///
/// ```ascii
/// h_G * ( [-sum(z_i * s_i): i_type == SpendAuth]P_SpendAuth + [-sum(z_i * s_i): i_type == Binding]P_Binding + sum([z_i]R_i) + sum([z_i * c_i]VK_i) ) = 0_G
/// ```
///
/// As follows elliptic curve scalar multiplication convention,
/// scalar variables are lowercase and group point variables
/// are uppercase. This does not exactly match the RedDSA
/// notation in the [Zcash protocol specification §B.1][ps].
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#reddsabatchverify
#[allow(non_snake_case)]
pub fn verify<R: RngCore + CryptoRng>(self, mut rng: R) -> Result<(), Error> {
let n = self.signatures.len();
let mut VK_coeffs = Vec::with_capacity(n);
let mut VKs = Vec::with_capacity(n);
let mut R_coeffs = Vec::with_capacity(self.signatures.len());
let mut Rs = Vec::with_capacity(self.signatures.len());
let mut P_spendauth_coeff = Fr::ZERO;
let mut P_binding_coeff = Fr::ZERO;
for item in self.signatures.iter() {
let (s_bytes, r_bytes, c) = match item.inner {
Inner::SpendAuth { sig, c, .. } => (sig.s_bytes(), sig.r_bytes(), c),
Inner::Binding { sig, c, .. } => (sig.s_bytes(), sig.r_bytes(), c),
};
let s = Fr::from_bytes_checked(&s_bytes).map_err(|_| Error::InvalidSignature)?;
let R = decaf377::Encoding(r_bytes)
.vartime_decompress()
.map_err(|_| Error::InvalidSignature)?;
let VK = match item.inner {
Inner::SpendAuth { vk_bytes, .. } => {
VerificationKey::<SpendAuth>::try_from(vk_bytes.bytes)?.point
}
Inner::Binding { vk_bytes, .. } => {
VerificationKey::<Binding>::try_from(vk_bytes.bytes)?.point
}
};
let z = gen_128_bits(&mut rng);
let P_coeff = z * s;
match item.inner {
Inner::SpendAuth { .. } => {
P_spendauth_coeff -= P_coeff;
}
Inner::Binding { .. } => {
P_binding_coeff -= P_coeff;
}
};
R_coeffs.push(z);
Rs.push(R);
VK_coeffs.push(z * c);
VKs.push(VK);
}
use std::iter::once;
let scalars = once(&P_spendauth_coeff)
.chain(once(&P_binding_coeff))
.chain(VK_coeffs.iter())
.chain(R_coeffs.iter());
let basepoints = [SpendAuth::basepoint(), Binding::basepoint()];
let points = basepoints.iter().chain(VKs.iter()).chain(Rs.iter());
let check = Element::vartime_multiscalar_mul(scalars, points);
if check.is_identity() {
Ok(())
} else {
Err(Error::InvalidSignature)
}
}
}