decaf377/fields/fr/
arkworks.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
use super::Fr;
use ark_ff::{BigInt, Field, PrimeField, SqrtPrecomputation};
use ark_ff::{BigInteger, FftField};
use ark_serialize::{
    CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
    CanonicalSerializeWithFlags, Compress, EmptyFlags, Flags, SerializationError, Valid, Validate,
};
use ark_std::{rand, str::FromStr, string::ToString, One, Zero};
use core::convert::TryInto;
use core::{
    fmt::{Display, Formatter},
    iter,
};

impl PrimeField for Fr {
    /// A `BigInteger` type that can represent elements of this field.
    type BigInt = BigInt<4>;

    /// The Decaf377 scalar field modulus `r` = 0x4aad957a68b2955982d1347970dec005293a3afc43c8afeb95aee9ac33fd9ff
    const MODULUS: Self::BigInt = ark_ff::BigInt(Self::MODULUS_LIMBS);

    /// The value `(p - 1)/ 2`.
    const MODULUS_MINUS_ONE_DIV_TWO: Self::BigInt = BigInt(Self::MODULUS_MINUS_ONE_DIV_TWO_LIMBS);

    /// The size of the modulus in bits.
    const MODULUS_BIT_SIZE: u32 = Self::MODULUS_BIT_SIZE;

    /// The trace of the field is defined as the smallest integer `t` such that by
    /// `2^s * t = p - 1`, and `t` is coprime to 2.
    const TRACE: Self::BigInt = BigInt(Self::TRACE_LIMBS);

    /// The value `(t - 1)/ 2`.
    const TRACE_MINUS_ONE_DIV_TWO: Self::BigInt = BigInt(Self::TRACE_MINUS_ONE_DIV_TWO_LIMBS);

    fn from_bigint(repr: Self::BigInt) -> Option<Self> {
        if repr >= Fr::MODULUS {
            None
        } else {
            // Assuming BigInt is little endian
            Some(Self::from_le_limbs(repr.0))
        }
    }

    fn into_bigint(self) -> Self::BigInt {
        BigInt(self.to_le_limbs())
    }

    fn from_be_bytes_mod_order(bytes: &[u8]) -> Self {
        let mut bytes_copy = bytes.to_vec();
        bytes_copy.reverse();
        Self::from_le_bytes_mod_order(&bytes_copy)
    }

    fn from_le_bytes_mod_order(bytes: &[u8]) -> Self {
        Self::from_le_bytes_mod_order(bytes)
    }
}

impl Field for Fr {
    type BasePrimeField = Self;
    type BasePrimeFieldIter = iter::Once<Self::BasePrimeField>;

    const SQRT_PRECOMP: Option<SqrtPrecomputation<Self>> = Some(SqrtPrecomputation::Case3Mod4 {
        modulus_plus_one_div_four: &[
            12562434535201961600,
            1487569876998365887,
            7353046484906113792,
            84080023168010837,
        ],
    });

    const ZERO: Self = Self::ZERO;

    // Montomgery representation of one
    const ONE: Self = Self::ONE;

    fn extension_degree() -> u64 {
        1
    }

    fn to_base_prime_field_elements(&self) -> Self::BasePrimeFieldIter {
        iter::once(*self)
    }

    fn from_base_prime_field_elems(elems: &[Self::BasePrimeField]) -> Option<Self> {
        if elems.len() != (Self::extension_degree() as usize) {
            return None;
        }
        Some(elems[0])
    }

    fn from_base_prime_field(elem: Self::BasePrimeField) -> Self {
        elem
    }

    fn double(&self) -> Self {
        self.add(self)
    }

    fn double_in_place(&mut self) -> &mut Self {
        *self = self.add(self);
        self
    }

    fn neg_in_place(&mut self) -> &mut Self {
        *self = Self::ZERO.sub(self);
        self
    }

    fn from_random_bytes_with_flags<F: ark_serialize::Flags>(bytes: &[u8]) -> Option<(Self, F)> {
        Some((Self::from_le_bytes_mod_order(bytes), F::default()))
    }

    fn legendre(&self) -> ark_ff::LegendreSymbol {
        use ark_ff::LegendreSymbol::*;

        if self.is_zero() {
            return Zero;
        }
        if self.pow(&Self::MODULUS_MINUS_ONE_DIV_TWO.0).is_one() {
            return QuadraticResidue;
        }
        return QuadraticNonResidue;
    }

    fn square(&self) -> Self {
        self.square()
    }

    fn square_in_place(&mut self) -> &mut Self {
        *self = self.square();
        self
    }

    fn inverse(&self) -> Option<Self> {
        self.inverse()
    }

    fn inverse_in_place(&mut self) -> Option<&mut Self> {
        if let Some(inverse) = self.inverse() {
            *self = inverse;
            Some(self)
        } else {
            None
        }
    }

    fn frobenius_map_in_place(&mut self, _power: usize) {
        // Because this is a prime field, we don't need to do anything,
        // the automorphism is trivial.
    }

    fn characteristic() -> &'static [u64] {
        &Self::MODULUS_LIMBS
    }
}

impl FftField for Fr {
    const GENERATOR: Self = Self::MULTIPLICATIVE_GENERATOR;
    const TWO_ADICITY: u32 = Self::TWO_ADICITY;
    const TWO_ADIC_ROOT_OF_UNITY: Self = Self::TWO_ADIC_ROOT_OF_UNITY;
    const SMALL_SUBGROUP_BASE: Option<u32> = None;
    const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None;
    const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> = None;
}

impl Zero for Fr {
    #[inline]
    fn zero() -> Self {
        Fr::ZERO
    }

    #[inline]
    fn is_zero(&self) -> bool {
        *self == Fr::ZERO
    }
}

impl One for Fr {
    #[inline]
    fn one() -> Self {
        Fr::ONE
    }

    #[inline]
    fn is_one(&self) -> bool {
        *self == Fr::ONE
    }
}
impl CanonicalDeserializeWithFlags for Fr {
    fn deserialize_with_flags<R: ark_std::io::Read, F: Flags>(
        mut reader: R,
    ) -> Result<(Self, F), SerializationError> {
        // Enough for the field element + 8 bits of flags. The last byte may or may not contain flags.
        let mut bytes = [0u8; (Self::MODULUS_BIT_SIZE as usize + 7) / 8];

        let expected_len = (Self::MODULUS_BIT_SIZE as usize + F::BIT_SIZE + 7) / 8;
        reader.read_exact(&mut bytes[..expected_len])?;
        let flags = F::from_u8_remove_flags(&mut bytes[bytes.len() - 1])
            .ok_or(SerializationError::UnexpectedFlags)?;
        // Then, convert the bytes to limbs, to benefit from the canonical check we have for
        // bigint.
        let mut limbs = [0u64; 4];
        for (limb, chunk) in limbs.iter_mut().zip(bytes[..32].chunks_exact(8)) {
            *limb = u64::from_le_bytes(chunk.try_into().expect("chunk will have the right size"));
        }
        let out = Self::from_bigint(BigInt(limbs)).ok_or(SerializationError::InvalidData)?;
        Ok((out, flags))
    }
}

impl Valid for Fr {
    fn check(&self) -> Result<(), SerializationError> {
        Ok(())
    }
}

impl CanonicalDeserialize for Fr {
    fn deserialize_with_mode<R: ark_std::io::Read>(
        reader: R,
        _compress: Compress,
        validate: Validate,
    ) -> Result<Self, SerializationError> {
        let (out, _) = Self::deserialize_with_flags::<R, EmptyFlags>(reader)?;
        match validate {
            Validate::Yes => out.check(),
            Validate::No => Ok(()),
        }?;
        Ok(out)
    }
}

impl CanonicalSerialize for Fr {
    #[inline]
    fn serialize_with_mode<W: ark_std::io::Write>(
        &self,
        writer: W,
        _compress: Compress,
    ) -> Result<(), SerializationError> {
        self.serialize_with_flags(writer, EmptyFlags)
    }

    #[inline]
    fn serialized_size(&self, _compress: Compress) -> usize {
        self.serialized_size_with_flags::<EmptyFlags>()
    }
}

impl CanonicalSerializeWithFlags for Fr {
    fn serialize_with_flags<W: ark_std::io::Write, F: Flags>(
        &self,
        mut writer: W,
        flags: F,
    ) -> Result<(), SerializationError> {
        // Arkworks imposes this constraint
        if F::BIT_SIZE > 8 {
            return Err(SerializationError::NotEnoughSpace);
        }

        // We can't just write the bytes out, because the last byte might be masked by flags.
        let mut bytes = self.to_bytes_le();
        // Either the flags fit into the last byte...
        if bytes.len() == self.serialized_size_with_flags::<F>() {
            // In which case we have to mask the last byte
            bytes[bytes.len() - 1] |= flags.u8_bitmask();
            writer.write_all(&bytes)?;
        } else {
            // Or else we create a new byte
            writer.write_all(&bytes)?;
            writer.write_all(&[flags.u8_bitmask()])?;
        }
        Ok(())
    }

    fn serialized_size_with_flags<F: Flags>(&self) -> usize {
        (Self::MODULUS_BIT_SIZE as usize + F::BIT_SIZE + 7) / 8
    }
}

impl ark_std::rand::distributions::Distribution<Fr> for ark_std::rand::distributions::Standard {
    fn sample<R: rand::prelude::Rng + ?Sized>(&self, rng: &mut R) -> Fr {
        loop {
            let mut repr: [u64; 4] = rng.sample(ark_std::rand::distributions::Standard);
            let shave_bits = 64 * 4 - (Fr::MODULUS_BIT_SIZE as usize);
            // Mask away the unused bits at the beginning.
            let mask = if shave_bits == 64 {
                0
            } else {
                u64::MAX >> shave_bits
            };

            if let Some(val) = repr.last_mut() {
                *val &= mask
            }

            if let Some(small_enough) = Fr::from_bigint(BigInt(repr)) {
                return small_enough;
            }
        }
    }
}

impl Display for Fr {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        let string = self.into_bigint().to_string();
        write!(f, "{}", string.trim_start_matches('0'))
    }
}

impl FromStr for Fr {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        ark_std::dbg!(&s);
        // CANDO: a more efficient method accumulating into 64 bits first.
        let mut acc = Self::zero();

        let ten = Self::from(10u8);

        for c in s.chars() {
            match c.to_digit(10) {
                Some(c) => {
                    acc = ten * acc + Self::from(u64::from(c));
                }
                None => {
                    return Err(());
                }
            }
        }
        Ok(acc)
    }
}

impl From<num_bigint::BigUint> for Fr {
    #[inline]
    fn from(val: num_bigint::BigUint) -> Fr {
        Fr::from_le_bytes_mod_order(&val.to_bytes_le())
    }
}

impl From<Fr> for num_bigint::BigUint {
    #[inline(always)]
    fn from(other: Fr) -> Self {
        other.into_bigint().into()
    }
}

impl From<Fr> for BigInt<4> {
    #[inline(always)]
    fn from(fr: Fr) -> Self {
        fr.into_bigint()
    }
}

impl From<BigInt<4>> for Fr {
    /// Converts `Self::BigInteger` into `Self`
    #[inline(always)]
    fn from(int: BigInt<4>) -> Self {
        Fr::from_le_bytes_mod_order(&int.to_bytes_le())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    extern crate alloc;
    use alloc::{format, vec::Vec};
    use proptest::prelude::*;

    prop_compose! {
        // Technically this might overflow, but we won't miss any values,
        // just return 0 if you overflow when consuming.
        fn arb_fr_limbs()(
            z0 in 0..u64::MAX,
            z1 in 0..u64::MAX,
            z2 in 0..u64::MAX,
            z3 in 0..336320092672043349u64
        ) -> [u64; 4] {
            [z0, z1, z2, z3]
        }
    }

    prop_compose! {
        fn arb_fr()(a in arb_fr_limbs()) -> Fr {
            // Will be fine because of the bounds in the arb_fr_limbs
            Fr::from_bigint(BigInt(a)).unwrap_or(Fr::zero())
        }
    }

    prop_compose! {
        fn arb_nonzero_fr()(a in arb_fr()) -> Fr {
            if a == Fr::zero() { Fr::one() } else { a }
        }
    }

    proptest! {
        #[test]
        fn test_addition_commutative(a in arb_fr(), b in arb_fr()) {
            assert_eq!(a + b, b + a);
        }
    }

    proptest! {
        #[test]
        fn test_addition_associative(a in arb_fr(), b in arb_fr(), c in arb_fr()) {
            assert_eq!(a + (b + c), (a + b) + c);
        }
    }

    proptest! {
        #[test]
        fn test_add_zero_identity(a in arb_fr()) {
            let zero = Fr::zero();

            assert_eq!(a + zero, a);
            assert_eq!(zero + a, a);
        }
    }

    proptest! {
        #[test]
        fn test_subtract_self_is_zero(a in arb_fr()) {
            let zero = Fr::zero();

            assert_eq!(a - a, zero);
        }
    }

    proptest! {
        #[test]
        fn test_doubling_is_just_addition(a in arb_fr()) {
            let two = Fr::from(2u64);

            assert_eq!(two * a, a + a);
            assert_eq!(a.double(), a + a);
            assert_eq!(*(a.clone().double_in_place()), a + a);
        }
    }

    proptest! {
        #[test]
        fn test_adding_negation(a in arb_fr()) {
            assert_eq!(a + -a, Fr::ZERO)
        }
    }

    proptest! {
        #[test]
        fn test_multiplication_commutative(a in arb_fr(), b in arb_fr()) {
            assert_eq!(a * b, b * a);
        }
    }

    proptest! {
        #[test]
        fn test_multiplication_associative(a in arb_fr(), b in arb_fr(), c in arb_fr()) {
            assert_eq!(a * (b * c), (a * b) * c);
        }
    }

    proptest! {
        #[test]
        fn test_multiplication_distributive(a in arb_fr(), b in arb_fr(), c in arb_fr()) {
            assert_eq!(a * (b + c), a * b + a * c);
        }
    }

    proptest! {
        #[test]
        fn test_multiply_one_identity(a in arb_fr()) {
            assert_eq!(a * Fr::ONE, a);
            assert_eq!(Fr::ONE * a, a);
        }
    }

    proptest! {
        #[test]
        fn test_multiply_minus_one_is_negation(a in arb_fr()) {
            let minus_one = -Fr::ONE;

            assert_eq!(a * minus_one, a.neg());
        }
    }

    proptest! {
        #[test]
        fn test_square_is_multiply(a in arb_fr()) {
            assert_eq!(a.square(), a * a);
            assert_eq!(*(a.clone().square_in_place()), a * a);
        }
    }

    proptest! {
        #[test]
        fn test_inverse(a in arb_nonzero_fr()) {
            assert_eq!(a * a.inverse().unwrap(), Fr::ONE);
            assert_eq!(a * *(a.clone().inverse_in_place().unwrap()), Fr::ONE);
        }
    }

    fn naive_inverse(a: Fr) -> Fr {
        a.pow(&(-Fr::from(2u64)).into_bigint().0)
    }

    proptest! {
        #[test]
        fn test_inverse_vs_naive_inverse(a in arb_nonzero_fr()) {
            assert_eq!(a.inverse().unwrap(), naive_inverse(a));
        }
    }

    proptest! {
        #[test]
        fn test_sqrt(a in arb_fr()) {
            match a.sqrt() {
                Some(x) => assert_eq!(x * x, a),
                None => {}
            }
        }
    }

    proptest! {
        #[test]
        fn test_into_bigint_monomorphism(a in arb_fr()) {
            let as_bigint = a.into_bigint();
            let roundtrip = Fr::from_bigint(as_bigint);

            assert_eq!(Some(a), roundtrip);
        }
    }

    proptest! {
        #[test]
        fn test_conversion_to_bytes_via_bigint(a in arb_fr()) {
            let way1 = a.to_bytes_le();
            let way2 = a.into_bigint().to_bytes_le();
            assert_eq!(way1.as_slice(), way2.as_slice());
        }
    }

    proptest! {
        #[test]
        fn test_legendre_symbol(a in arb_nonzero_fr()) {
            assert_eq!((a * a).legendre(), ark_ff::LegendreSymbol::QuadraticResidue);
        }
    }

    proptest! {
        #[test]
        fn test_canonical_serialize_monomorphism(a in arb_fr()) {
            let mut bytes: Vec<u8> = Vec::new();
            let roundtrip = a.serialize_compressed(&mut bytes).and_then(|_| Fr::deserialize_compressed(&*bytes));
            assert!(roundtrip.is_ok());
            assert_eq!(*roundtrip.as_ref().clone().unwrap(), a);
        }
    }

    fn naive_from_le_bytes_mod_order(bytes: &[u8]) -> Fr {
        let mut acc = Fr::zero();
        let mut insert = Fr::one();
        for byte in bytes {
            for i in 0..8 {
                if (byte >> i) & 1 == 1 {
                    acc += insert;
                }
                insert.double_in_place();
            }
        }
        acc
    }

    proptest! {
        #[test]
        fn test_from_le_bytes_mod_order_vs_naive(bytes in any::<[u8; 80]>()) {
            let way1 = Fr::from_le_bytes_mod_order(&bytes);
            let way2 = naive_from_le_bytes_mod_order(&bytes);
            assert_eq!(way1, way2);
        }
    }

    proptest! {
        #[test]
        fn test_from_str(a in arb_fr()) {
            let x = <Fr as PrimeField>::BigInt::from(a);
            assert_eq!(Ok(a), Fr::from_str(&format!("{}", x)));
        }
    }

    #[test]
    fn test_from_le_bytes_mod_order_examples() {
        let p_plus_1_bytes: [u8; 32] = [
            0, 218, 63, 195, 154, 238, 90, 185, 254, 138, 60, 196, 175, 163, 147, 82, 0, 236, 13,
            151, 71, 19, 45, 152, 85, 41, 139, 166, 87, 217, 170, 4,
        ];
        let bytes_for_1 = {
            let mut out = [0u8; 32];
            out[0] = 1;
            out
        };
        assert_eq!(Fr::from_le_bytes_mod_order(&p_plus_1_bytes), Fr::one());
        assert_eq!(
            Fr::from_le_bytes_mod_order(&p_plus_1_bytes).to_bytes_le(),
            bytes_for_1
        );
    }

    #[test]
    fn test_addition_examples() {
        let z1: Fr = BigInt([1, 1, 1, 1]).into();
        let z2: Fr = BigInt([2, 2, 2, 2]).into();
        let z3: Fr = BigInt([3, 3, 3, 3]).into();

        assert_eq!(z3, z1 + z2);
    }

    #[test]
    fn test_subtraction_examples() {
        let mut z1: Fr = BigInt([1, 1, 1, 1]).into();
        z1 -= z1;

        assert_eq!(z1, Fr::ZERO);
    }

    #[test]
    fn test_small_multiplication_examples() {
        let z1: Fr = BigInt([1, 0, 0, 0]).into();
        let z2: Fr = BigInt([2, 0, 0, 0]).into();
        let z3: Fr = BigInt([3, 0, 0, 0]).into();

        assert_eq!(z1 + z1, z1 * z2);
        assert_eq!(z1 + z1 + z1, z1 * z3);
    }

    #[test]
    fn test_2192_times_zero() {
        let two192: Fr = BigInt([0, 0, 0, 1]).into();
        assert_eq!(two192 * Fr::zero(), Fr::ZERO);
    }

    #[test]
    fn test_minus_one_squared() {
        let minus_one = Fr::zero() - Fr::one();
        assert_eq!(minus_one.square(), Fr::ONE);
    }

    #[test]
    fn test_modulus_from_le_bytes_mod_order() {
        // Field modulus - 1 in non-montgomery form that satisfies the fiat-crypto preconditions (< m)
        let modulus_minus_one: Fr = BigInt([
            13356249993388743166,
            5950279507993463550,
            10965441865914903552,
            336320092672043349,
        ])
        .into();

        assert_eq!(modulus_minus_one, -Fr::one());
    }
}