1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#![allow(non_snake_case)]
use ark_ec::twisted_edwards::TECurveConfig;
use ark_ff::Field;

use crate::element::{Decaf377EdwardsConfig, EdwardsProjective};

use crate::{
    constants::{ONE, TWO, ZETA},
    Element, Fq, OnCurve, Sign, SqrtRatioZeta,
};

impl Element {
    /// Elligator 2 map to decaf377 point
    fn elligator_map(r_0: &Fq) -> Element {
        // Ref: `Decaf_1_1_Point.elligator` (optimized) in `ristretto.sage`
        let A = Decaf377EdwardsConfig::COEFF_A;
        let D = Decaf377EdwardsConfig::COEFF_D;

        let r = *ZETA * r_0.square();

        let den = (D * r - (D - A)) * ((D - A) * r - D);
        let num = (r + *ONE) * (A - *TWO * D);

        let x = num * den;
        let (iss, mut isri) = Fq::sqrt_ratio_zeta(&ONE, &x);

        let sgn;
        let twiddle;
        if iss {
            sgn = *ONE;
            twiddle = *ONE;
        } else {
            sgn = -(*ONE);
            twiddle = *r_0;
        }

        isri *= twiddle;

        let mut s = isri * num;
        let t = -(sgn) * isri * s * (r - *ONE) * (A - *TWO * D).square() - *ONE;

        if s.is_negative() == iss {
            s = -s
        }

        // Convert point to extended projective (X : Y : Z : T)
        let E = *TWO * s;
        let F = *ONE + Decaf377EdwardsConfig::COEFF_A * s.square();
        let G = *ONE - Decaf377EdwardsConfig::COEFF_A * s.square();
        let H = t;
        let result = Element {
            inner: EdwardsProjective::new(E * H, F * G, E * G, F * H),
        };

        debug_assert!(
            result.inner.is_on_curve(),
            "resulting point must be on the curve",
        );

        result
    }

    /// Maps two field elements to a uniformly distributed decaf377 `Element`.
    ///
    /// The two field elements provided as inputs should be independently chosen.
    pub fn hash_to_curve(r_1: &Fq, r_2: &Fq) -> Element {
        let R_1 = Element::elligator_map(r_1);
        let R_2 = Element::elligator_map(r_2);
        &R_1 + &R_2
    }

    #[deprecated(note = "please use `hash_to_curve` instead")]
    pub fn map_to_group_uniform(r_1: &Fq, r_2: &Fq) -> Element {
        Element::hash_to_curve(r_1, r_2)
    }

    /// Maps a field element to a decaf377 `Element` suitable for CDH challenges.
    pub fn encode_to_curve(r: &Fq) -> Element {
        Element::elligator_map(r)
    }

    #[deprecated(note = "please use `encode_to_curve` instead")]
    pub fn map_to_group_cdh(r: &Fq) -> Element {
        Element::encode_to_curve(r)
    }
}

#[cfg(test)]
mod tests {
    use crate::element::EdwardsAffine;

    use super::*;

    #[test]
    fn test_elligator() {
        // These are the test cases from testElligatorDeterministic in ristretto.sage
        let inputs = [
            [
                221, 101, 215, 58, 170, 229, 36, 124, 172, 234, 94, 214, 186, 163, 242, 30, 65,
                123, 76, 74, 56, 60, 24, 213, 240, 137, 49, 189, 138, 39, 90, 6,
            ],
            [
                23, 203, 214, 51, 26, 149, 7, 160, 228, 239, 208, 147, 124, 109, 75, 72, 64, 16,
                64, 215, 53, 185, 249, 168, 188, 49, 22, 194, 118, 7, 242, 16,
            ],
            [
                177, 123, 90, 180, 115, 7, 108, 183, 161, 167, 24, 15, 248, 218, 206, 227, 76, 137,
                162, 187, 148, 174, 66, 44, 205, 1, 211, 91, 140, 50, 144, 1,
            ],
            [
                204, 225, 121, 228, 145, 30, 86, 208, 132, 242, 203, 9, 153, 90, 195, 150, 215, 49,
                166, 70, 78, 68, 47, 98, 30, 130, 115, 139, 168, 242, 238, 8,
            ],
            [
                59, 150, 40, 159, 229, 96, 201, 47, 170, 163, 9, 208, 205, 201, 112, 241, 179, 82,
                198, 79, 207, 160, 184, 245, 63, 189, 101, 115, 217, 228, 74, 13,
            ],
            [
                74, 159, 227, 190, 73, 213, 131, 200, 50, 102, 249, 230, 48, 103, 85, 168, 239,
                149, 7, 164, 12, 42, 217, 177, 189, 97, 214, 98, 102, 73, 10, 16,
            ],
            [
                183, 227, 227, 192, 119, 10, 155, 143, 64, 60, 249, 165, 240, 39, 31, 197, 159,
                121, 64, 82, 10, 1, 34, 35, 121, 34, 146, 69, 226, 196, 156, 14,
            ],
            [
                61, 21, 56, 224, 11, 181, 71, 186, 238, 126, 234, 240, 14, 168, 75, 73, 251, 111,
                175, 85, 108, 9, 77, 2, 88, 249, 24, 235, 53, 96, 51, 15,
            ],
        ];

        let expected_xy_coordinates = [
            [
                ark_ff::MontFp!(
                    "1267955849280145133999011095767946180059440909377398529682813961428156596086"
                ),
                ark_ff::MontFp!(
                    "5356565093348124788258444273601808083900527100008973995409157974880178412098"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "1502379126429822955521756759528876454108853047288874182661923263559139887582"
                ),
                ark_ff::MontFp!(
                    "7074060208122316523843780248565740332109149189893811936352820920606931717751"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "2943006201157313879823661217587757631000260143892726691725524748591717287835"
                ),
                ark_ff::MontFp!(
                    "4988568968545687084099497807398918406354768651099165603393269329811556860241"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "2893226299356126359042735859950249532894422276065676168505232431940642875576"
                ),
                ark_ff::MontFp!(
                    "5540423804567408742733533031617546054084724133604190833318816134173899774745"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "2950911977149336430054248283274523588551527495862004038190631992225597951816"
                ),
                ark_ff::MontFp!(
                    "4487595759841081228081250163499667279979722963517149877172642608282938805393"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "3318574188155535806336376903248065799756521242795466350457330678746659358665"
                ),
                ark_ff::MontFp!(
                    "7706453242502782485686954136003233626318476373744684895503194201695334921001"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "3753408652523927772367064460787503971543824818235418436841486337042861871179"
                ),
                ark_ff::MontFp!(
                    "2820605049615187268236268737743168629279853653807906481532750947771625104256"
                ),
            ],
            [
                ark_ff::MontFp!(
                    "7803875556376973796629423752730968724982795310878526731231718944925551226171"
                ),
                ark_ff::MontFp!(
                    "7033839813997913565841973681083930410776455889380940679209912201081069572111"
                ),
            ],
        ];

        use ark_serialize::CanonicalDeserialize;

        for (ind, input) in inputs.iter().enumerate() {
            let input_element =
                Fq::deserialize_compressed(&input[..]).expect("encoding of test vector is valid");

            let expected: Element = Element {
                inner: EdwardsAffine::new(
                    expected_xy_coordinates[ind][0],
                    expected_xy_coordinates[ind][1],
                )
                .into(),
            };

            let actual = Element::elligator_map(&input_element);

            assert_eq!(actual, expected);
        }
    }
}