cnidarium/
delta.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
use std::{any::Any, sync::Arc};

use futures::StreamExt;
use parking_lot::RwLock;
use tendermint::abci;

use crate::{
    future::{
        CacheFuture, StateDeltaNonconsensusPrefixRawStream, StateDeltaNonconsensusRangeRawStream,
        StateDeltaPrefixKeysStream, StateDeltaPrefixRawStream,
    },
    utils, Cache, EscapedByteSlice, StateRead, StateWrite,
};

/// An arbitrarily-deeply nested stack of delta updates to an underlying state.
///
/// This API allows exploring a tree of possible execution paths concurrently,
/// before finally selecting one and applying it to the underlying state.
///
/// Using this API requires understanding its invariants.
///
/// On creation, `StateDelta::new` takes ownership of a `StateRead + StateWrite`
/// instance, acquiring a "write lock" over the underlying state (since `&mut S`
/// is `StateWrite` if `S: StateWrite`, it's possible to pass a unique
/// reference).
///
/// The resulting `StateDelta` instance is a "leaf" state, and can be used for
/// reads and writes, following the some execution path.
///
/// When two potential execution paths diverge, `delta.fork()` can be used to
/// fork the state update.  The new forked `StateDelta` will include all
/// previous state writes made to the original (and its ancestors).  Any writes
/// made to the original `StateDelta` after `fork()` is called will not be seen
/// by the forked state.
///
/// Finally, after some execution path has been selected, calling
/// `delta.apply()` on one of the possible state updates will commit the changes
/// to the underlying state instance, and invalidate all other delta updates in
/// the same family.  It is a programming error to use the other delta updates
/// after `apply()` has been called, but ideally this should not be a problem in
/// practice: the API is intended to explore a tree of possible execution paths;
/// once one has been selected, the others should be discarded.
#[derive(Debug)]
pub struct StateDelta<S: StateRead> {
    /// The underlying state instance.
    ///
    /// The Arc<_> allows it to be shared between different stacks of delta updates,
    /// and the RwLock<Option<_>> allows it to be taken out when it's time to commit
    /// the changes from one of the stacks.
    state: Arc<RwLock<Option<S>>>,
    /// A stack of intermediate delta updates, with the "top" layers first.
    ///
    /// We store all the layers directly, rather than using a recursive structure,
    /// so that the type doesn't depend on how many layers are involved. We're only
    /// duplicating the Arc<_>, so this should be cheap.
    layers: Vec<Arc<RwLock<Option<Cache>>>>,
    /// The final delta update in the stack, the one we're currently working on.
    /// Storing this separately allows us to avoid lock contention during writes.
    /// In fact, this data shouldn't usually be shared at all; the only reason it's
    /// wrapped this way is so that prefix streams can have 'static lifetimes.
    /// We option-wrap it so it can be chained with the layers; it will never be None.
    leaf_cache: Arc<RwLock<Option<Cache>>>,
}

impl<S: StateRead> StateDelta<S> {
    /// Create a new tree of possible updates to an underlying `state`.
    pub fn new(state: S) -> Self {
        Self {
            state: Arc::new(RwLock::new(Some(state))),
            layers: Vec::default(),
            leaf_cache: Arc::new(RwLock::new(Some(Cache::default()))),
        }
    }

    /// Fork execution, returning a new child state that includes all previous changes.
    pub fn fork(&mut self) -> Self {
        // If we have writes in the leaf cache, we'll move them to a new layer,
        // ensuring that the new child only sees writes made to this state
        // *before* fork was called, and not after.
        //
        // Doing this only when the leaf cache is dirty means that we don't
        // add empty layers in repeated fork() calls without intervening writes.
        if self
            .leaf_cache
            .read()
            .as_ref()
            .expect("unable to get ref to leaf cache, storage not initialized?")
            .is_dirty()
        {
            let new_layer = std::mem::replace(
                &mut self.leaf_cache,
                Arc::new(RwLock::new(Some(Cache::default()))),
            );
            self.layers.push(new_layer);
        }

        Self {
            state: self.state.clone(),
            layers: self.layers.clone(),
            leaf_cache: Arc::new(RwLock::new(Some(Cache::default()))),
        }
    }

    /// Flatten all changes in this branch of the tree into a single [`Cache`],
    /// invalidating all other branches of the tree and releasing the underlying
    /// state back to the caller.
    ///
    /// The [`apply`](Self::apply) method is a convenience wrapper around this
    /// that applies the changes to the underlying state.
    pub fn flatten(self) -> (S, Cache) {
        tracing::trace!("flattening branch");
        // Take ownership of the underlying state, immediately invalidating all
        // other delta stacks in the same family.
        let state = self
            .state
            .write()
            .take()
            .expect("apply must be called only once");

        // Flatten the intermediate layers into a single cache, applying them from oldest
        // (bottom) to newest (top), so that newer writes clobber old ones.
        let mut changes = Cache::default();
        for layer in self.layers {
            let cache = layer
                .write()
                .take()
                .expect("cache must not have already been applied");
            changes.merge(cache);
        }
        // Last, apply the changes in the leaf cache.
        changes.merge(
            self.leaf_cache
                .write()
                .take()
                .expect("unable to take leaf cache, was it already applied?"),
        );

        (state, changes)
    }
}

impl<S: StateRead + StateWrite> StateDelta<S> {
    /// Apply all changes in this branch of the tree to the underlying state,
    /// releasing it back to the caller and invalidating all other branches of
    /// the tree.
    pub fn apply(self) -> (S, Vec<abci::Event>) {
        let (mut state, mut changes) = self.flatten();
        let events = changes.take_events();

        // Apply the flattened changes to the underlying state.
        changes.apply_to(&mut state);

        // Finally, return ownership of the state back to the caller.
        (state, events)
    }
}

impl<S: StateRead + StateWrite> StateDelta<Arc<S>> {
    pub fn try_apply(self) -> anyhow::Result<(S, Vec<abci::Event>)> {
        let (arc_state, mut changes) = self.flatten();
        let events = std::mem::take(&mut changes.events);

        if let Ok(mut state) = Arc::try_unwrap(arc_state) {
            // Apply the flattened changes to the underlying state.
            changes.apply_to(&mut state);

            // Finally, return ownership of the state back to the caller.
            Ok((state, events))
        } else {
            Err(anyhow::anyhow!("did not have unique ownership of Arc<S>"))
        }
    }
}

impl<S: StateRead> StateRead for StateDelta<S> {
    type GetRawFut = CacheFuture<S::GetRawFut>;
    type PrefixRawStream = StateDeltaPrefixRawStream<S::PrefixRawStream>;
    type PrefixKeysStream = StateDeltaPrefixKeysStream<S::PrefixKeysStream>;
    type NonconsensusPrefixRawStream =
        StateDeltaNonconsensusPrefixRawStream<S::NonconsensusPrefixRawStream>;
    type NonconsensusRangeRawStream =
        StateDeltaNonconsensusRangeRawStream<S::NonconsensusRangeRawStream>;

    fn get_raw(&self, key: &str) -> Self::GetRawFut {
        // Check if we have a cache hit in the leaf cache.
        if let Some(entry) = self
            .leaf_cache
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .unwritten_changes
            .get(key)
        {
            return CacheFuture::hit(entry.clone());
        }

        // Iterate through the stack, top to bottom, to see if we have a cache hit.
        for layer in self.layers.iter().rev() {
            if let Some(entry) = layer
                .read()
                .as_ref()
                .expect("delta must not have been applied")
                .unwritten_changes
                .get(key)
            {
                return CacheFuture::hit(entry.clone());
            }
        }

        // If we got here, the key must be in the underlying state or not present at all.
        CacheFuture::miss(
            self.state
                .read()
                .as_ref()
                .expect("delta must not have been applied")
                .get_raw(key),
        )
    }

    fn nonverifiable_get_raw(&self, key: &[u8]) -> Self::GetRawFut {
        // Check if we have a cache hit in the leaf cache.
        if let Some(entry) = self
            .leaf_cache
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .nonverifiable_changes
            .get(key)
        {
            return CacheFuture::hit(entry.clone());
        }

        // Iterate through the stack, top to bottom, to see if we have a cache hit.
        for layer in self.layers.iter().rev() {
            if let Some(entry) = layer
                .read()
                .as_ref()
                .expect("delta must not have been applied")
                .nonverifiable_changes
                .get(key)
            {
                return CacheFuture::hit(entry.clone());
            }
        }

        // If we got here, the key must be in the underlying state or not present at all.
        CacheFuture::miss(
            self.state
                .read()
                .as_ref()
                .expect("delta must not have been applied")
                .nonverifiable_get_raw(key),
        )
    }

    fn object_type(&self, key: &'static str) -> Option<std::any::TypeId> {
        // Check if we have a cache hit in the leaf cache.
        if let Some(entry) = self
            .leaf_cache
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .ephemeral_objects
            .get(key)
        {
            // We have to explicitly call `Any::type_id(&**v)` here because this ensures that we are
            // asking for the type of the `Any` *inside* the `Box<dyn Any>`, rather than the type of
            // `Box<dyn Any>` itself.
            return entry.as_ref().map(|v| std::any::Any::type_id(&**v));
        }

        // Iterate through the stack, top to bottom, to see if we have a cache hit.
        for layer in self.layers.iter().rev() {
            if let Some(entry) = layer
                .read()
                .as_ref()
                .expect("delta must not have been applied")
                .ephemeral_objects
                .get(key)
            {
                // We have to explicitly call `Any::type_id(&**v)` here because this ensures that we are
                // asking for the type of the `Any` *inside* the `Box<dyn Any>`, rather than the type of
                // `Box<dyn Any>` itself.
                return entry.as_ref().map(|v| std::any::Any::type_id(&**v));
            }
        }

        // Fall through to the underlying store.
        self.state
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .object_type(key)
    }

    fn object_get<T: std::any::Any + Send + Sync + Clone>(&self, key: &'static str) -> Option<T> {
        // Check if we have a cache hit in the leaf cache.
        if let Some(entry) = self
            .leaf_cache
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .ephemeral_objects
            .get(key)
        {
            return entry
                .as_ref()
                .map(|v| {
                    v.downcast_ref().unwrap_or_else(|| panic!("unexpected type for key \"{key}\" in `StateDelta::object_get`: expected type {}", std::any::type_name::<T>()))
                })
                .cloned();
        }

        // Iterate through the stack, top to bottom, to see if we have a cache hit.
        for layer in self.layers.iter().rev() {
            if let Some(entry) = layer
                .read()
                .as_ref()
                .expect("delta must not have been applied")
                .ephemeral_objects
                .get(key)
            {
                return entry
                    .as_ref()
                    .map(|v| {
                    v.downcast_ref().unwrap_or_else(|| panic!("unexpected type for key \"{key}\" in `StateDelta::object_get`: expected type {}", std::any::type_name::<T>()))
                }).cloned();
            }
        }

        // Fall through to the underlying store.
        self.state
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .object_get(key)
    }

    fn prefix_raw(&self, prefix: &str) -> Self::PrefixRawStream {
        let underlying = self
            .state
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .prefix_raw(prefix)
            .peekable();
        StateDeltaPrefixRawStream {
            underlying,
            layers: self.layers.clone(),
            leaf_cache: self.leaf_cache.clone(),
            last_key: None,
            prefix: prefix.to_owned(),
        }
    }

    fn prefix_keys(&self, prefix: &str) -> Self::PrefixKeysStream {
        let underlying = self
            .state
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .prefix_keys(prefix)
            .peekable();
        StateDeltaPrefixKeysStream {
            underlying,
            layers: self.layers.clone(),
            leaf_cache: self.leaf_cache.clone(),
            last_key: None,
            prefix: prefix.to_owned(),
        }
    }

    fn nonverifiable_prefix_raw(&self, prefix: &[u8]) -> Self::NonconsensusPrefixRawStream {
        let underlying = self
            .state
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .nonverifiable_prefix_raw(prefix)
            .peekable();
        StateDeltaNonconsensusPrefixRawStream {
            underlying,
            layers: self.layers.clone(),
            leaf_cache: self.leaf_cache.clone(),
            last_key: None,
            prefix: prefix.to_vec(),
        }
    }

    fn nonverifiable_range_raw(
        &self,
        prefix: Option<&[u8]>,
        range: impl std::ops::RangeBounds<Vec<u8>>,
    ) -> anyhow::Result<Self::NonconsensusRangeRawStream> {
        let (range, (start, end)) = utils::convert_bounds(range)?;
        let underlying = self
            .state
            .read()
            .as_ref()
            .expect("delta must not have been applied")
            .nonverifiable_range_raw(prefix, range)?
            .peekable();
        Ok(StateDeltaNonconsensusRangeRawStream {
            underlying,
            layers: self.layers.clone(),
            leaf_cache: self.leaf_cache.clone(),
            last_key: None,
            prefix: prefix.map(|p| p.to_vec()),
            range: (start, end),
        })
    }
}

impl<S: StateRead> StateWrite for StateDelta<S> {
    fn put_raw(&mut self, key: String, value: jmt::OwnedValue) {
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .unwritten_changes
            .insert(key, Some(value));
    }

    fn delete(&mut self, key: String) {
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .unwritten_changes
            .insert(key, None);
    }

    fn nonverifiable_delete(&mut self, key: Vec<u8>) {
        tracing::trace!(key = ?EscapedByteSlice(&key), "deleting key");
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .nonverifiable_changes
            .insert(key, None);
    }

    fn nonverifiable_put_raw(&mut self, key: Vec<u8>, value: Vec<u8>) {
        tracing::trace!(key = ?EscapedByteSlice(&key), value = ?EscapedByteSlice(&value), "insert nonverifiable change");
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .nonverifiable_changes
            .insert(key, Some(value));
    }

    fn object_put<T: Clone + Any + Send + Sync>(&mut self, key: &'static str, value: T) {
        if let Some(previous_type) = self.object_type(key) {
            if std::any::TypeId::of::<T>() != previous_type {
                panic!(
                    "unexpected type for key \"{key}\" in `StateDelta::object_put`: expected type {expected}",
                    expected = std::any::type_name::<T>(),
                );
            }
        }
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .ephemeral_objects
            .insert(key, Some(Box::new(value)));
    }

    fn object_delete(&mut self, key: &'static str) {
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .ephemeral_objects
            .insert(key, None);
    }

    fn object_merge(
        &mut self,
        objects: std::collections::BTreeMap<&'static str, Option<Box<dyn Any + Send + Sync>>>,
    ) {
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .ephemeral_objects
            .extend(objects);
    }

    fn record(&mut self, event: abci::Event) {
        self.leaf_cache
            .write()
            .as_mut()
            .expect("delta must not have been applied")
            .events
            .push(event)
    }
}

/// Extension trait providing `try_begin_transaction()` on `Arc<StateDelta<S>>`.
pub trait ArcStateDeltaExt: Sized {
    type S: StateRead;
    /// Attempts to begin a transaction on this `Arc<State>`, returning `None` if the `Arc` is shared.
    fn try_begin_transaction(&'_ mut self) -> Option<StateDelta<&'_ mut StateDelta<Self::S>>>;
}

impl<S: StateRead> ArcStateDeltaExt for Arc<StateDelta<S>> {
    type S = S;
    fn try_begin_transaction(&'_ mut self) -> Option<StateDelta<&'_ mut StateDelta<S>>> {
        Arc::get_mut(self).map(StateDelta::new)
    }
}