ark_ff/fields/models/
quadratic_extension.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
use ark_serialize::{
    CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
    CanonicalSerializeWithFlags, Compress, EmptyFlags, Flags, SerializationError, Valid, Validate,
};
use ark_std::{
    cmp::{Ord, Ordering, PartialOrd},
    fmt,
    io::{Read, Write},
    iter::Chain,
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
    vec::Vec,
};

use num_traits::{One, Zero};
use zeroize::Zeroize;

use ark_std::rand::{
    distributions::{Distribution, Standard},
    Rng,
};

use crate::{
    biginteger::BigInteger,
    fields::{Field, LegendreSymbol, PrimeField},
    SqrtPrecomputation, ToConstraintField, UniformRand,
};

/// Defines a Quadratic extension field from a quadratic non-residue.
pub trait QuadExtConfig: 'static + Send + Sync + Sized {
    /// The prime field that this quadratic extension is eventually an extension of.
    type BasePrimeField: PrimeField;
    /// The base field that this field is a quadratic extension of.
    ///
    /// Note: while for simple instances of quadratic extensions such as `Fp2`
    /// we might see `BaseField == BasePrimeField`, it won't always hold true.
    /// E.g. for an extension tower: `BasePrimeField == Fp`, but `BaseField == Fp3`.
    type BaseField: Field<BasePrimeField = Self::BasePrimeField>;
    /// The type of the coefficients for an efficient implemntation of the
    /// Frobenius endomorphism.
    type FrobCoeff: Field;

    /// The degree of the extension over the base prime field.
    const DEGREE_OVER_BASE_PRIME_FIELD: usize;

    /// The quadratic non-residue used to construct the extension.
    const NONRESIDUE: Self::BaseField;

    /// Coefficients for the Frobenius automorphism.
    const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff];

    /// A specializable method for multiplying an element of the base field by
    /// the quadratic non-residue. This is used in Karatsuba multiplication
    /// and in complex squaring.
    #[inline(always)]
    fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
        *fe *= &Self::NONRESIDUE;
        fe
    }

    /// A specializable method for setting `y = x + NONRESIDUE * y`.
    /// This allows for optimizations when the non-residue is
    /// canonically negative in the field.
    #[inline(always)]
    fn mul_base_field_by_nonresidue_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
        Self::mul_base_field_by_nonresidue_in_place(y);
        *y += x;
    }

    /// A specializable method for computing x + mul_base_field_by_nonresidue(y) + y
    /// This allows for optimizations when the non-residue is not -1.
    #[inline(always)]
    fn mul_base_field_by_nonresidue_plus_one_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
        let old_y = *y;
        Self::mul_base_field_by_nonresidue_and_add(y, x);
        *y += old_y;
    }

    /// A specializable method for computing x - mul_base_field_by_nonresidue(y)
    /// This allows for optimizations when the non-residue is
    /// canonically negative in the field.
    #[inline(always)]
    fn sub_and_mul_base_field_by_nonresidue(y: &mut Self::BaseField, x: &Self::BaseField) {
        Self::mul_base_field_by_nonresidue_in_place(y);
        let mut result = *x;
        result -= &*y;
        *y = result;
    }

    /// A specializable method for multiplying an element of the base field by
    /// the appropriate Frobenius coefficient.
    fn mul_base_field_by_frob_coeff(fe: &mut Self::BaseField, power: usize);
}

/// An element of a quadratic extension field F_p\[X\]/(X^2 - P::NONRESIDUE) is
/// represented as c0 + c1 * X, for c0, c1 in `P::BaseField`.
#[derive(Derivative)]
#[derivative(
    Default(bound = "P: QuadExtConfig"),
    Hash(bound = "P: QuadExtConfig"),
    Clone(bound = "P: QuadExtConfig"),
    Copy(bound = "P: QuadExtConfig"),
    Debug(bound = "P: QuadExtConfig"),
    PartialEq(bound = "P: QuadExtConfig"),
    Eq(bound = "P: QuadExtConfig")
)]
pub struct QuadExtField<P: QuadExtConfig> {
    /// Coefficient `c0` in the representation of the field element `c = c0 + c1 * X`
    pub c0: P::BaseField,
    /// Coefficient `c1` in the representation of the field element `c = c0 + c1 * X`
    pub c1: P::BaseField,
}

impl<P: QuadExtConfig> QuadExtField<P> {
    /// Create a new field element from coefficients `c0` and `c1`,
    /// so that the result is of the form `c0 + c1 * X`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use ark_std::test_rng;
    /// # use ark_test_curves::bls12_381::{Fq as Fp, Fq2 as Fp2};
    /// # use ark_std::UniformRand;
    /// let c0: Fp = Fp::rand(&mut test_rng());
    /// let c1: Fp = Fp::rand(&mut test_rng());
    /// // `Fp2` a degree-2 extension over `Fp`.
    /// let c: Fp2 = Fp2::new(c0, c1);
    /// ```
    pub const fn new(c0: P::BaseField, c1: P::BaseField) -> Self {
        Self { c0, c1 }
    }

    /// This is only to be used when the element is *known* to be in the
    /// cyclotomic subgroup.
    pub fn conjugate_in_place(&mut self) -> &mut Self {
        self.c1 = -self.c1;
        self
    }

    /// Norm of QuadExtField over `P::BaseField`:`Norm(a) = a * a.conjugate()`.
    /// This simplifies to: `Norm(a) = a.x^2 - P::NON_RESIDUE * a.y^2`.
    /// This is alternatively expressed as `Norm(a) = a^(1 + p)`.
    ///
    /// # Examples
    /// ```
    /// # use ark_std::test_rng;
    /// # use ark_std::{UniformRand, Zero};
    /// # use ark_test_curves::{Field, bls12_381::Fq2 as Fp2};
    /// let c: Fp2 = Fp2::rand(&mut test_rng());
    /// let norm = c.norm();
    /// // We now compute the norm using the `a * a.conjugate()` approach.
    /// // A Frobenius map sends an element of `Fp2` to one of its p_th powers:
    /// // `a.frobenius_map_in_place(1) -> a^p` and `a^p` is also `a`'s Galois conjugate.
    /// let mut c_conjugate = c;
    /// c_conjugate.frobenius_map_in_place(1);
    /// let norm2 = c * c_conjugate;
    /// // Computing the norm of an `Fp2` element should result in an element
    /// // in BaseField `Fp`, i.e. `c1 == 0`
    /// assert!(norm2.c1.is_zero());
    /// assert_eq!(norm, norm2.c0);
    /// ```
    pub fn norm(&self) -> P::BaseField {
        // t1 = c0.square() - P::NON_RESIDUE * c1^2
        let mut result = self.c1.square();
        P::sub_and_mul_base_field_by_nonresidue(&mut result, &self.c0.square());
        result
    }

    /// In-place multiply both coefficients `c0` & `c1` of the quadratic
    /// extension field by an element from the base field.
    pub fn mul_assign_by_basefield(&mut self, element: &P::BaseField) {
        self.c0 *= element;
        self.c1 *= element;
    }
}

impl<P: QuadExtConfig> Zero for QuadExtField<P> {
    fn zero() -> Self {
        QuadExtField::new(P::BaseField::zero(), P::BaseField::zero())
    }

    fn is_zero(&self) -> bool {
        self.c0.is_zero() && self.c1.is_zero()
    }
}

impl<P: QuadExtConfig> One for QuadExtField<P> {
    fn one() -> Self {
        QuadExtField::new(P::BaseField::one(), P::BaseField::zero())
    }

    fn is_one(&self) -> bool {
        self.c0.is_one() && self.c1.is_zero()
    }
}

type BaseFieldIter<P> = <<P as QuadExtConfig>::BaseField as Field>::BasePrimeFieldIter;
impl<P: QuadExtConfig> Field for QuadExtField<P> {
    type BasePrimeField = P::BasePrimeField;

    type BasePrimeFieldIter = Chain<BaseFieldIter<P>, BaseFieldIter<P>>;

    const SQRT_PRECOMP: Option<SqrtPrecomputation<Self>> = None;

    const ZERO: Self = Self::new(P::BaseField::ZERO, P::BaseField::ZERO);
    const ONE: Self = Self::new(P::BaseField::ONE, P::BaseField::ZERO);

    fn extension_degree() -> u64 {
        2 * P::BaseField::extension_degree()
    }

    fn from_base_prime_field(elem: Self::BasePrimeField) -> Self {
        let fe = P::BaseField::from_base_prime_field(elem);
        Self::new(fe, P::BaseField::ZERO)
    }

    fn to_base_prime_field_elements(&self) -> Self::BasePrimeFieldIter {
        self.c0
            .to_base_prime_field_elements()
            .chain(self.c1.to_base_prime_field_elements())
    }

    fn from_base_prime_field_elems(elems: &[Self::BasePrimeField]) -> Option<Self> {
        if elems.len() != (Self::extension_degree() as usize) {
            return None;
        }
        let base_ext_deg = P::BaseField::extension_degree() as usize;
        Some(Self::new(
            P::BaseField::from_base_prime_field_elems(&elems[0..base_ext_deg]).unwrap(),
            P::BaseField::from_base_prime_field_elems(&elems[base_ext_deg..]).unwrap(),
        ))
    }

    fn double(&self) -> Self {
        let mut result = *self;
        result.double_in_place();
        result
    }

    fn double_in_place(&mut self) -> &mut Self {
        self.c0.double_in_place();
        self.c1.double_in_place();
        self
    }

    fn neg_in_place(&mut self) -> &mut Self {
        self.c0.neg_in_place();
        self.c1.neg_in_place();
        self
    }

    fn square(&self) -> Self {
        let mut result = *self;
        result.square_in_place();
        result
    }

    #[inline]
    fn from_random_bytes_with_flags<F: Flags>(bytes: &[u8]) -> Option<(Self, F)> {
        let split_at = bytes.len() / 2;
        if let Some(c0) = P::BaseField::from_random_bytes(&bytes[..split_at]) {
            if let Some((c1, flags)) =
                P::BaseField::from_random_bytes_with_flags(&bytes[split_at..])
            {
                return Some((QuadExtField::new(c0, c1), flags));
            }
        }
        None
    }

    #[inline]
    fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
        Self::from_random_bytes_with_flags::<EmptyFlags>(bytes).map(|f| f.0)
    }

    fn square_in_place(&mut self) -> &mut Self {
        // (c0, c1)^2 = (c0 + x*c1)^2
        //            = c0^2 + 2 c0 c1 x + c1^2 x^2
        //            = c0^2 + beta * c1^2 + 2 c0 * c1 * x
        //            = (c0^2 + beta * c1^2, 2 c0 * c1)
        // Where beta is P::NONRESIDUE.
        // When beta = -1, we can re-use intermediate additions to improve performance.
        if P::NONRESIDUE == -P::BaseField::ONE {
            // When the non-residue is -1, we save 2 intermediate additions,
            // and use one fewer intermediate variable

            let c0_copy = self.c0;
            // v0 = c0 - c1
            let mut v0 = self.c0;
            v0 -= &self.c1;
            self.c0 += self.c1;
            // result.c0 *= (c0 - c1)
            // result.c0 = (c0 - c1) * (c0 + c1) = c0^2 - c1^2
            self.c0 *= &v0;

            // result.c1 = 2 c1
            self.c1.double_in_place();
            // result.c1 *= c0
            // result.c1 = (2 * c1) * c0
            self.c1 *= &c0_copy;

            self
        } else {
            // v0 = c0 - c1
            let mut v0 = self.c0 - &self.c1;
            // v3 = c0 - beta * c1
            let mut v3 = self.c1;
            P::sub_and_mul_base_field_by_nonresidue(&mut v3, &self.c0);
            // v2 = c0 * c1
            let v2 = self.c0 * &self.c1;

            // v0 = (v0 * v3)
            // v0 = (c0 - c1) * (c0 - beta*c1)
            // v0 = c0^2 - beta * c0 * c1 - c0 * c1 + beta * c1^2
            v0 *= &v3;

            // result.c1 = 2 * c0 * c1
            self.c1 = v2;
            self.c1.double_in_place();
            // result.c0 = (c0^2 - beta * c0 * c1 - c0 * c1 + beta * c1^2) + ((beta + 1) c0 * c1)
            // result.c0 = (c0^2 - beta * c0 * c1 + beta * c1^2) + (beta * c0 * c1)
            // result.c0 = c0^2 + beta * c1^2
            self.c0 = v2;
            P::mul_base_field_by_nonresidue_plus_one_and_add(&mut self.c0, &v0);

            self
        }
    }

    fn inverse(&self) -> Option<Self> {
        if self.is_zero() {
            None
        } else {
            // Guide to Pairing-based Cryptography, Algorithm 5.19.
            // v1 = c1.square()
            let v1 = self.c1.square();
            // v0 = c0.square() - beta * v1
            let mut v0 = v1;
            P::sub_and_mul_base_field_by_nonresidue(&mut v0, &self.c0.square());

            v0.inverse().map(|v1| {
                let c0 = self.c0 * &v1;
                let c1 = -(self.c1 * &v1);
                Self::new(c0, c1)
            })
        }
    }

    fn inverse_in_place(&mut self) -> Option<&mut Self> {
        if let Some(inverse) = self.inverse() {
            *self = inverse;
            Some(self)
        } else {
            None
        }
    }

    fn frobenius_map_in_place(&mut self, power: usize) {
        self.c0.frobenius_map_in_place(power);
        self.c1.frobenius_map_in_place(power);
        P::mul_base_field_by_frob_coeff(&mut self.c1, power);
    }

    fn legendre(&self) -> LegendreSymbol {
        // The LegendreSymbol in a field of order q for an element x can be
        // computed as x^((q-1)/2).
        // Since we are in a quadratic extension of a field F_p,
        // we have that q = p^2.
        // Notice then that (q-1)/2 = ((p-1)/2) * (1 + p).
        // This implies that we can compute the symbol as (x^(1+p))^((p-1)/2).
        // Recall that computing x^(1 + p) is equivalent to taking the norm of x,
        // and it will output an element in the base field F_p.
        // Then exponentiating by (p-1)/2 in the base field is equivalent to computing
        // the legendre symbol in the base field.
        self.norm().legendre()
    }

    fn sqrt(&self) -> Option<Self> {
        // Square root based on the complex method. See
        // https://eprint.iacr.org/2012/685.pdf (page 15, algorithm 8)
        if self.c1.is_zero() {
            // for c = c0 + c1 * x, we have c1 = 0
            // sqrt(c) == sqrt(c0) is an element of Fp2, i.e. sqrt(c0) = a = a0 + a1 * x for some a0, a1 in Fp
            // squaring both sides: c0 = a0^2 + a1^2 * x^2 + (2 * a0 * a1 * x) = a0^2 + (a1^2 * P::NONRESIDUE)
            // since there are no `x` terms on LHS, a0 * a1 = 0
            // so either a0 = sqrt(c0) or a1 = sqrt(c0/P::NONRESIDUE)
            if self.c0.legendre().is_qr() {
                // either c0 is a valid sqrt in the base field
                return self.c0.sqrt().map(|c0| Self::new(c0, P::BaseField::ZERO));
            } else {
                // or we need to compute sqrt(c0/P::NONRESIDUE)
                return (self.c0.div(P::NONRESIDUE))
                    .sqrt()
                    .map(|res| Self::new(P::BaseField::ZERO, res));
            }
        }
        // Try computing the square root
        // Check at the end of the algorithm if it was a square root
        let alpha = self.norm();

        // Compute `(p+1)/2` as `1/2`.
        // This is cheaper than `P::BaseField::one().double().inverse()`
        let mut two_inv = P::BasePrimeField::MODULUS;

        two_inv.add_with_carry(&1u64.into());
        two_inv.div2();

        let two_inv = P::BasePrimeField::from(two_inv);
        let two_inv = P::BaseField::from_base_prime_field(two_inv);

        alpha.sqrt().and_then(|alpha| {
            let mut delta = (alpha + &self.c0) * &two_inv;
            if delta.legendre().is_qnr() {
                delta -= &alpha;
            }
            let c0 = delta.sqrt().expect("Delta must have a square root");
            let c0_inv = c0.inverse().expect("c0 must have an inverse");
            let sqrt_cand = Self::new(c0, self.c1 * &two_inv * &c0_inv);
            // Check if sqrt_cand is actually the square root
            // if not, there exists no square root.
            if sqrt_cand.square() == *self {
                Some(sqrt_cand)
            } else {
                #[cfg(debug_assertions)]
                {
                    use crate::fields::LegendreSymbol::*;
                    if self.legendre() != QuadraticNonResidue {
                        panic!(
                            "Input has a square root per its legendre symbol, but it was not found"
                        )
                    }
                }
                None
            }
        })
    }

    fn sqrt_in_place(&mut self) -> Option<&mut Self> {
        (*self).sqrt().map(|sqrt| {
            *self = sqrt;
            self
        })
    }
}

/// `QuadExtField` elements are ordered lexicographically.
impl<P: QuadExtConfig> Ord for QuadExtField<P> {
    #[inline(always)]
    fn cmp(&self, other: &Self) -> Ordering {
        match self.c1.cmp(&other.c1) {
            Ordering::Greater => Ordering::Greater,
            Ordering::Less => Ordering::Less,
            Ordering::Equal => self.c0.cmp(&other.c0),
        }
    }
}

impl<P: QuadExtConfig> PartialOrd for QuadExtField<P> {
    #[inline(always)]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<P: QuadExtConfig> Zeroize for QuadExtField<P> {
    // The phantom data does not contain element-specific data
    // and thus does not need to be zeroized.
    fn zeroize(&mut self) {
        self.c0.zeroize();
        self.c1.zeroize();
    }
}

impl<P: QuadExtConfig> From<u128> for QuadExtField<P> {
    fn from(other: u128) -> Self {
        Self::new(other.into(), P::BaseField::ZERO)
    }
}

impl<P: QuadExtConfig> From<i128> for QuadExtField<P> {
    #[inline]
    fn from(val: i128) -> Self {
        let abs = Self::from(val.unsigned_abs());
        if val.is_positive() {
            abs
        } else {
            -abs
        }
    }
}

impl<P: QuadExtConfig> From<u64> for QuadExtField<P> {
    fn from(other: u64) -> Self {
        Self::new(other.into(), P::BaseField::ZERO)
    }
}

impl<P: QuadExtConfig> From<i64> for QuadExtField<P> {
    #[inline]
    fn from(val: i64) -> Self {
        let abs = Self::from(val.unsigned_abs());
        if val.is_positive() {
            abs
        } else {
            -abs
        }
    }
}

impl<P: QuadExtConfig> From<u32> for QuadExtField<P> {
    fn from(other: u32) -> Self {
        Self::new(other.into(), P::BaseField::ZERO)
    }
}

impl<P: QuadExtConfig> From<i32> for QuadExtField<P> {
    #[inline]
    fn from(val: i32) -> Self {
        let abs = Self::from(val.unsigned_abs());
        if val.is_positive() {
            abs
        } else {
            -abs
        }
    }
}

impl<P: QuadExtConfig> From<u16> for QuadExtField<P> {
    fn from(other: u16) -> Self {
        Self::new(other.into(), P::BaseField::ZERO)
    }
}

impl<P: QuadExtConfig> From<i16> for QuadExtField<P> {
    #[inline]
    fn from(val: i16) -> Self {
        let abs = Self::from(val.unsigned_abs());
        if val.is_positive() {
            abs
        } else {
            -abs
        }
    }
}

impl<P: QuadExtConfig> From<u8> for QuadExtField<P> {
    fn from(other: u8) -> Self {
        Self::new(other.into(), P::BaseField::ZERO)
    }
}

impl<P: QuadExtConfig> From<i8> for QuadExtField<P> {
    #[inline]
    fn from(val: i8) -> Self {
        let abs = Self::from(val.unsigned_abs());
        if val.is_positive() {
            abs
        } else {
            -abs
        }
    }
}

impl<P: QuadExtConfig> From<bool> for QuadExtField<P> {
    fn from(other: bool) -> Self {
        Self::new(u8::from(other).into(), P::BaseField::ZERO)
    }
}

impl<P: QuadExtConfig> Neg for QuadExtField<P> {
    type Output = Self;
    #[inline]
    #[must_use]
    fn neg(mut self) -> Self {
        self.c0.neg_in_place();
        self.c1.neg_in_place();
        self
    }
}

impl<P: QuadExtConfig> Distribution<QuadExtField<P>> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> QuadExtField<P> {
        QuadExtField::new(UniformRand::rand(rng), UniformRand::rand(rng))
    }
}

impl<'a, P: QuadExtConfig> Add<&'a QuadExtField<P>> for QuadExtField<P> {
    type Output = Self;

    #[inline]
    fn add(mut self, other: &Self) -> Self {
        self += other;
        self
    }
}

impl<'a, P: QuadExtConfig> Sub<&'a QuadExtField<P>> for QuadExtField<P> {
    type Output = Self;

    #[inline(always)]
    fn sub(mut self, other: &Self) -> Self {
        self -= other;
        self
    }
}

impl<'a, P: QuadExtConfig> Mul<&'a QuadExtField<P>> for QuadExtField<P> {
    type Output = Self;

    #[inline(always)]
    fn mul(mut self, other: &Self) -> Self {
        self *= other;
        self
    }
}

impl<'a, P: QuadExtConfig> Div<&'a QuadExtField<P>> for QuadExtField<P> {
    type Output = Self;

    #[inline]
    fn div(mut self, other: &Self) -> Self {
        self.mul_assign(&other.inverse().unwrap());
        self
    }
}

impl<'a, P: QuadExtConfig> AddAssign<&'a Self> for QuadExtField<P> {
    #[inline]
    fn add_assign(&mut self, other: &Self) {
        self.c0 += &other.c0;
        self.c1 += &other.c1;
    }
}

impl<'a, P: QuadExtConfig> SubAssign<&'a Self> for QuadExtField<P> {
    #[inline]
    fn sub_assign(&mut self, other: &Self) {
        self.c0 -= &other.c0;
        self.c1 -= &other.c1;
    }
}

impl_additive_ops_from_ref!(QuadExtField, QuadExtConfig);
impl_multiplicative_ops_from_ref!(QuadExtField, QuadExtConfig);

impl<'a, P: QuadExtConfig> MulAssign<&'a Self> for QuadExtField<P> {
    #[inline]
    fn mul_assign(&mut self, other: &Self) {
        if Self::extension_degree() == 2 {
            let c1_input = [self.c0, self.c1];
            P::mul_base_field_by_nonresidue_in_place(&mut self.c1);
            *self = Self::new(
                P::BaseField::sum_of_products(&[self.c0, self.c1], &[other.c0, other.c1]),
                P::BaseField::sum_of_products(&c1_input, &[other.c1, other.c0]),
            )
        } else {
            // Karatsuba multiplication;
            // Guide to Pairing-based cryprography, Algorithm 5.16.
            let mut v0 = self.c0;
            v0 *= &other.c0;
            let mut v1 = self.c1;
            v1 *= &other.c1;

            self.c1 += &self.c0;
            self.c1 *= &(other.c0 + &other.c1);
            self.c1 -= &v0;
            self.c1 -= &v1;
            self.c0 = v1;
            P::mul_base_field_by_nonresidue_and_add(&mut self.c0, &v0);
        }
    }
}

impl<'a, P: QuadExtConfig> DivAssign<&'a Self> for QuadExtField<P> {
    #[inline]
    fn div_assign(&mut self, other: &Self) {
        self.mul_assign(&other.inverse().unwrap());
    }
}

impl<P: QuadExtConfig> fmt::Display for QuadExtField<P> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "QuadExtField({} + {} * u)", self.c0, self.c1)
    }
}

impl<P: QuadExtConfig> CanonicalSerializeWithFlags for QuadExtField<P> {
    #[inline]
    fn serialize_with_flags<W: Write, F: Flags>(
        &self,
        mut writer: W,
        flags: F,
    ) -> Result<(), SerializationError> {
        self.c0.serialize_compressed(&mut writer)?;
        self.c1.serialize_with_flags(&mut writer, flags)?;
        Ok(())
    }

    #[inline]
    fn serialized_size_with_flags<F: Flags>(&self) -> usize {
        self.c0.compressed_size() + self.c1.serialized_size_with_flags::<F>()
    }
}

impl<P: QuadExtConfig> CanonicalSerialize for QuadExtField<P> {
    #[inline]
    fn serialize_with_mode<W: Write>(
        &self,
        writer: W,
        _compress: Compress,
    ) -> Result<(), SerializationError> {
        self.serialize_with_flags(writer, EmptyFlags)
    }

    #[inline]
    fn serialized_size(&self, _compress: Compress) -> usize {
        self.serialized_size_with_flags::<EmptyFlags>()
    }
}

impl<P: QuadExtConfig> CanonicalDeserializeWithFlags for QuadExtField<P> {
    #[inline]
    fn deserialize_with_flags<R: Read, F: Flags>(
        mut reader: R,
    ) -> Result<(Self, F), SerializationError> {
        let c0 = CanonicalDeserialize::deserialize_compressed(&mut reader)?;
        let (c1, flags) = CanonicalDeserializeWithFlags::deserialize_with_flags(&mut reader)?;
        Ok((QuadExtField::new(c0, c1), flags))
    }
}

impl<P: QuadExtConfig> Valid for QuadExtField<P> {
    fn check(&self) -> Result<(), SerializationError> {
        self.c0.check()?;
        self.c1.check()
    }
}

impl<P: QuadExtConfig> CanonicalDeserialize for QuadExtField<P> {
    #[inline]
    fn deserialize_with_mode<R: Read>(
        mut reader: R,
        compress: Compress,
        validate: Validate,
    ) -> Result<Self, SerializationError> {
        let c0: P::BaseField =
            CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
        let c1: P::BaseField =
            CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
        Ok(QuadExtField::new(c0, c1))
    }
}

impl<P: QuadExtConfig> ToConstraintField<P::BasePrimeField> for QuadExtField<P>
where
    P::BaseField: ToConstraintField<P::BasePrimeField>,
{
    fn to_field_elements(&self) -> Option<Vec<P::BasePrimeField>> {
        let mut res = Vec::new();
        let mut c0_elems = self.c0.to_field_elements()?;
        let mut c1_elems = self.c1.to_field_elements()?;

        res.append(&mut c0_elems);
        res.append(&mut c1_elems);

        Some(res)
    }
}

#[cfg(test)]
mod quad_ext_tests {
    use super::*;
    use ark_std::test_rng;
    use ark_test_curves::{
        bls12_381::{Fq, Fq2},
        Field,
    };

    #[test]
    fn test_from_base_prime_field_elements() {
        let ext_degree = Fq2::extension_degree() as usize;
        // Test on slice lengths that aren't equal to the extension degree
        let max_num_elems_to_test = 4;
        for d in 0..max_num_elems_to_test {
            if d == ext_degree {
                continue;
            }
            let mut random_coeffs = Vec::<Fq>::new();
            for _ in 0..d {
                random_coeffs.push(Fq::rand(&mut test_rng()));
            }
            let res = Fq2::from_base_prime_field_elems(&random_coeffs);
            assert_eq!(res, None);
        }
        // Test on slice lengths that are equal to the extension degree
        // We test consistency against Fq2::new
        let number_of_tests = 10;
        for _ in 0..number_of_tests {
            let mut random_coeffs = Vec::<Fq>::new();
            for _ in 0..ext_degree {
                random_coeffs.push(Fq::rand(&mut test_rng()));
            }
            let actual = Fq2::from_base_prime_field_elems(&random_coeffs).unwrap();
            let expected = Fq2::new(random_coeffs[0], random_coeffs[1]);
            assert_eq!(actual, expected);
        }
    }

    #[test]
    fn test_from_base_prime_field_element() {
        let ext_degree = Fq2::extension_degree() as usize;
        let max_num_elems_to_test = 10;
        for _ in 0..max_num_elems_to_test {
            let mut random_coeffs = vec![Fq::zero(); ext_degree];
            let random_coeff = Fq::rand(&mut test_rng());
            let res = Fq2::from_base_prime_field(random_coeff);
            random_coeffs[0] = random_coeff;
            assert_eq!(
                res,
                Fq2::from_base_prime_field_elems(&random_coeffs).unwrap()
            );
        }
    }
}