ark_ff/fields/models/fp2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
use ark_std::Zero;
use super::quadratic_extension::*;
use crate::{fields::PrimeField, CyclotomicMultSubgroup};
use core::{marker::PhantomData, ops::Not};
/// Trait that specifies constants and methods for defining degree-two extension fields.
pub trait Fp2Config: 'static + Send + Sync + Sized {
/// Base prime field underlying this extension.
type Fp: PrimeField;
/// Quadratic non-residue in [`Self::Fp`] used to construct the extension
/// field. That is, `NONRESIDUE` is such that the quadratic polynomial
/// `f(X) = X^2 - Self::NONRESIDUE` in Fp\[X\] is irreducible in `Self::Fp`.
const NONRESIDUE: Self::Fp;
/// Coefficients for the Frobenius automorphism.
const FROBENIUS_COEFF_FP2_C1: &'static [Self::Fp];
/// Return `fe * Self::NONRESIDUE`.
/// Intended for specialization when [`Self::NONRESIDUE`] has a special
/// structure that can speed up multiplication
#[inline(always)]
fn mul_fp_by_nonresidue_in_place(fe: &mut Self::Fp) -> &mut Self::Fp {
*fe *= Self::NONRESIDUE;
fe
}
/// A specializable method for setting `y = x + NONRESIDUE * y`.
/// This allows for optimizations when the non-residue is
/// canonically negative in the field.
#[inline(always)]
fn mul_fp_by_nonresidue_and_add(y: &mut Self::Fp, x: &Self::Fp) {
Self::mul_fp_by_nonresidue_in_place(y);
*y += x;
}
/// A specializable method for computing x + mul_fp_by_nonresidue(y) + y
/// This allows for optimizations when the non-residue is not -1.
#[inline(always)]
fn mul_fp_by_nonresidue_plus_one_and_add(y: &mut Self::Fp, x: &Self::Fp) {
let old_y = *y;
Self::mul_fp_by_nonresidue_and_add(y, x);
*y += old_y;
}
/// A specializable method for computing x - mul_fp_by_nonresidue(y)
/// This allows for optimizations when the non-residue is
/// canonically negative in the field.
#[inline(always)]
fn sub_and_mul_fp_by_nonresidue(y: &mut Self::Fp, x: &Self::Fp) {
*y = *x - Self::mul_fp_by_nonresidue_in_place(y);
}
}
/// Wrapper for [`Fp2Config`], allowing combination of the [`Fp2Config`] and [`QuadExtConfig`] traits.
pub struct Fp2ConfigWrapper<P: Fp2Config>(PhantomData<P>);
impl<P: Fp2Config> QuadExtConfig for Fp2ConfigWrapper<P> {
type BasePrimeField = P::Fp;
type BaseField = P::Fp;
type FrobCoeff = P::Fp;
const DEGREE_OVER_BASE_PRIME_FIELD: usize = 2;
const NONRESIDUE: Self::BaseField = P::NONRESIDUE;
const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff] = P::FROBENIUS_COEFF_FP2_C1;
#[inline(always)]
fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
P::mul_fp_by_nonresidue_in_place(fe)
}
#[inline(always)]
fn mul_base_field_by_nonresidue_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
P::mul_fp_by_nonresidue_and_add(y, x)
}
#[inline(always)]
fn mul_base_field_by_nonresidue_plus_one_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
P::mul_fp_by_nonresidue_plus_one_and_add(y, x)
}
#[inline(always)]
fn sub_and_mul_base_field_by_nonresidue(y: &mut Self::BaseField, x: &Self::BaseField) {
P::sub_and_mul_fp_by_nonresidue(y, x)
}
fn mul_base_field_by_frob_coeff(fe: &mut Self::BaseField, power: usize) {
*fe *= &Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
}
}
/// Alias for instances of quadratic extension fields. Helpful for omitting verbose
/// instantiations involving `Fp2ConfigWrapper`.
pub type Fp2<P> = QuadExtField<Fp2ConfigWrapper<P>>;
impl<P: Fp2Config> Fp2<P> {
/// In-place multiply both coefficients `c0` and `c1` of `self`
/// by an element from [`Fp`](`Fp2Config::Fp`).
///
/// # Examples
///
/// ```
/// # use ark_std::test_rng;
/// # use ark_test_curves::bls12_381::{Fq as Fp, Fq2 as Fp2};
/// # use ark_std::UniformRand;
/// let c0: Fp = Fp::rand(&mut test_rng());
/// let c1: Fp = Fp::rand(&mut test_rng());
/// let mut ext_element: Fp2 = Fp2::new(c0, c1);
///
/// let base_field_element: Fp = Fp::rand(&mut test_rng());
/// ext_element.mul_assign_by_fp(&base_field_element);
///
/// assert_eq!(ext_element.c0, c0 * base_field_element);
/// assert_eq!(ext_element.c1, c1 * base_field_element);
/// ```
pub fn mul_assign_by_fp(&mut self, other: &P::Fp) {
self.c0 *= other;
self.c1 *= other;
}
}
impl<P: Fp2Config> CyclotomicMultSubgroup for Fp2<P> {
const INVERSE_IS_FAST: bool = true;
fn cyclotomic_inverse_in_place(&mut self) -> Option<&mut Self> {
// As the multiplicative subgroup is of order p^2 - 1, the
// only non-trivial cyclotomic subgroup is of order p+1
// Therefore, for any element in the cyclotomic subgroup, we have that `x^(p+1) = 1`.
// Recall that `x^(p+1)` in a quadratic extension field is equal
// to the norm in the base field, so we have that
// `x * x.conjugate() = 1`. By uniqueness of inverses,
// for this subgroup, x.inverse() = x.conjugate()
self.is_zero().not().then(|| {
self.conjugate_in_place();
self
})
}
}