ark_ff/fields/models/
fp12_2over3over2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use ark_std::Zero;

use super::quadratic_extension::*;
use crate::{
    fields::{fp6_3over2::*, Field, Fp2, Fp2Config as Fp2ConfigTrait},
    CyclotomicMultSubgroup,
};
use core::{
    marker::PhantomData,
    ops::{AddAssign, Not, SubAssign},
};

type Fp2Config<P> = <<P as Fp12Config>::Fp6Config as Fp6Config>::Fp2Config;

pub trait Fp12Config: 'static + Send + Sync + Copy {
    type Fp6Config: Fp6Config;

    /// This *must* equal (0, 1, 0);
    /// see [[DESD06, Section 6.1]](https://eprint.iacr.org/2006/471.pdf).
    const NONRESIDUE: Fp6<Self::Fp6Config>;

    /// Coefficients for the Frobenius automorphism.
    const FROBENIUS_COEFF_FP12_C1: &'static [Fp2<Fp2Config<Self>>];

    /// Multiply by quadratic nonresidue v.
    #[inline(always)]
    fn mul_fp6_by_nonresidue_in_place(fe: &mut Fp6<Self::Fp6Config>) -> &mut Fp6<Self::Fp6Config> {
        // see [[DESD06, Section 6.1]](https://eprint.iacr.org/2006/471.pdf).
        let old_c1 = fe.c1;
        fe.c1 = fe.c0;
        fe.c0 = fe.c2;
        Self::Fp6Config::mul_fp2_by_nonresidue_in_place(&mut fe.c0);
        fe.c2 = old_c1;
        fe
    }
}

pub struct Fp12ConfigWrapper<P: Fp12Config>(PhantomData<P>);

impl<P: Fp12Config> QuadExtConfig for Fp12ConfigWrapper<P> {
    type BasePrimeField = <Fp2Config<P> as Fp2ConfigTrait>::Fp;
    type BaseField = Fp6<P::Fp6Config>;
    type FrobCoeff = Fp2<Fp2Config<P>>;

    const DEGREE_OVER_BASE_PRIME_FIELD: usize = 12;

    const NONRESIDUE: Self::BaseField = P::NONRESIDUE;

    const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff] = P::FROBENIUS_COEFF_FP12_C1;

    #[inline(always)]
    fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
        P::mul_fp6_by_nonresidue_in_place(fe)
    }

    fn mul_base_field_by_frob_coeff(fe: &mut Self::BaseField, power: usize) {
        fe.mul_assign_by_fp2(Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD]);
    }
}

pub type Fp12<P> = QuadExtField<Fp12ConfigWrapper<P>>;

impl<P: Fp12Config> Fp12<P> {
    pub fn mul_by_fp(&mut self, element: &<Self as Field>::BasePrimeField) {
        self.c0.mul_by_fp(element);
        self.c1.mul_by_fp(element);
    }

    pub fn mul_by_034(
        &mut self,
        c0: &Fp2<Fp2Config<P>>,
        c3: &Fp2<Fp2Config<P>>,
        c4: &Fp2<Fp2Config<P>>,
    ) {
        let a0 = self.c0.c0 * c0;
        let a1 = self.c0.c1 * c0;
        let a2 = self.c0.c2 * c0;
        let a = Fp6::new(a0, a1, a2);
        let mut b = self.c1;
        b.mul_by_01(c3, c4);

        let c0 = *c0 + c3;
        let c1 = c4;
        let mut e = self.c0 + &self.c1;
        e.mul_by_01(&c0, c1);
        self.c1 = e - &(a + &b);
        self.c0 = b;
        P::mul_fp6_by_nonresidue_in_place(&mut self.c0);
        self.c0 += &a;
    }

    pub fn mul_by_014(
        &mut self,
        c0: &Fp2<Fp2Config<P>>,
        c1: &Fp2<Fp2Config<P>>,
        c4: &Fp2<Fp2Config<P>>,
    ) {
        let mut aa = self.c0;
        aa.mul_by_01(c0, c1);
        let mut bb = self.c1;
        bb.mul_by_1(c4);
        let mut o = *c1;
        o.add_assign(c4);
        self.c1.add_assign(&self.c0);
        self.c1.mul_by_01(c0, &o);
        self.c1.sub_assign(&aa);
        self.c1.sub_assign(&bb);
        self.c0 = bb;
        P::mul_fp6_by_nonresidue_in_place(&mut self.c0);
        self.c0.add_assign(&aa);
    }
}

pub const fn characteristic_square_mod_6_is_one(characteristic: &[u64]) -> bool {
    // char mod 6 = (a_0 + 2**64 * a_1 + ...) mod 6
    //            = a_0 mod 6 + (2**64 * a_1 mod 6) + (...) mod 6
    //            = a_0 mod 6 + (4 * a_1 mod 6) + (4 * ...) mod 6
    let mut char_mod_6 = 0u64;
    crate::const_for!((i in 0..(characteristic.len())) {
        char_mod_6 += if i == 0 {
            characteristic[i] % 6
        } else {
            (4 * (characteristic[i] % 6)) % 6
        };
    });
    (char_mod_6 * char_mod_6) % 6 == 1
}

impl<P: Fp12Config> CyclotomicMultSubgroup for Fp12<P> {
    const INVERSE_IS_FAST: bool = true;

    fn cyclotomic_inverse_in_place(&mut self) -> Option<&mut Self> {
        self.is_zero().not().then(|| self.conjugate_in_place())
    }

    fn cyclotomic_square_in_place(&mut self) -> &mut Self {
        // Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions
        // - Robert Granger and Michael Scott
        //
        if characteristic_square_mod_6_is_one(Self::characteristic()) {
            let fp2_nr = <P::Fp6Config as Fp6Config>::mul_fp2_by_nonresidue;

            let r0 = &self.c0.c0;
            let r4 = &self.c0.c1;
            let r3 = &self.c0.c2;
            let r2 = &self.c1.c0;
            let r1 = &self.c1.c1;
            let r5 = &self.c1.c2;

            // t0 + t1*y = (z0 + z1*y)^2 = a^2
            let mut tmp = *r0 * r1;
            let t0 = (*r0 + r1) * &(fp2_nr(*r1) + r0) - &tmp - &fp2_nr(tmp);
            let t1 = tmp.double();

            // t2 + t3*y = (z2 + z3*y)^2 = b^2
            tmp = *r2 * r3;
            let t2 = (*r2 + r3) * &(fp2_nr(*r3) + r2) - &tmp - &fp2_nr(tmp);
            let t3 = tmp.double();

            // t4 + t5*y = (z4 + z5*y)^2 = c^2
            tmp = *r4 * r5;
            let t4 = (*r4 + r5) * &(fp2_nr(*r5) + r4) - &tmp - &fp2_nr(tmp);
            let t5 = tmp.double();

            let z0 = &mut self.c0.c0;
            let z4 = &mut self.c0.c1;
            let z3 = &mut self.c0.c2;
            let z2 = &mut self.c1.c0;
            let z1 = &mut self.c1.c1;
            let z5 = &mut self.c1.c2;

            // for A

            // z0 = 3 * t0 - 2 * z0
            *z0 = t0 - &*z0;
            z0.double_in_place();
            *z0 += &t0;

            // z1 = 3 * t1 + 2 * z1
            *z1 = t1 + &*z1;
            z1.double_in_place();
            *z1 += &t1;

            // for B

            // z2 = 3 * (xi * t5) + 2 * z2
            tmp = fp2_nr(t5);
            *z2 += tmp;
            z2.double_in_place();
            *z2 += &tmp;

            // z3 = 3 * t4 - 2 * z3
            *z3 = t4 - &*z3;
            z3.double_in_place();
            *z3 += &t4;

            // for C

            // z4 = 3 * t2 - 2 * z4
            *z4 = t2 - &*z4;
            z4.double_in_place();
            *z4 += &t2;

            // z5 = 3 * t3 + 2 * z5
            *z5 += t3;
            z5.double_in_place();
            *z5 += &t3;
            self
        } else {
            self.square_in_place()
        }
    }
}

#[cfg(test)]
mod test {
    #[test]
    fn test_characteristic_square_mod_6_is_one() {
        use super::*;
        assert!(!characteristic_square_mod_6_is_one(&[36]));
        assert!(characteristic_square_mod_6_is_one(&[37]));
        assert!(!characteristic_square_mod_6_is_one(&[38]));
        assert!(!characteristic_square_mod_6_is_one(&[39]));
        assert!(!characteristic_square_mod_6_is_one(&[40]));
        assert!(characteristic_square_mod_6_is_one(&[41]));

        assert!(!characteristic_square_mod_6_is_one(&[36, 36]));
        assert!(!characteristic_square_mod_6_is_one(&[36, 37]));
        assert!(!characteristic_square_mod_6_is_one(&[36, 38]));
        assert!(!characteristic_square_mod_6_is_one(&[36, 39]));
        assert!(!characteristic_square_mod_6_is_one(&[36, 40]));
        assert!(!characteristic_square_mod_6_is_one(&[36, 41]));

        assert!(!characteristic_square_mod_6_is_one(&[36, 41]));
        assert!(!characteristic_square_mod_6_is_one(&[37, 41]));
        assert!(!characteristic_square_mod_6_is_one(&[38, 41]));
        assert!(characteristic_square_mod_6_is_one(&[39, 41]));
        assert!(!characteristic_square_mod_6_is_one(&[40, 41]));
        assert!(characteristic_square_mod_6_is_one(&[41, 41]));
        assert!(characteristic_square_mod_6_is_one(&[1, u64::MAX]));
    }
}