ark_ff/fields/models/fp/montgomery_backend.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
use ark_std::{marker::PhantomData, Zero};
use super::{Fp, FpConfig};
use crate::{biginteger::arithmetic as fa, BigInt, BigInteger, PrimeField, SqrtPrecomputation};
use ark_ff_macros::unroll_for_loops;
/// A trait that specifies the constants and arithmetic procedures
/// for Montgomery arithmetic over the prime field defined by `MODULUS`.
///
/// # Note
/// Manual implementation of this trait is not recommended unless one wishes
/// to specialize arithmetic methods. Instead, the
/// [`MontConfig`][`ark_ff_macros::MontConfig`] derive macro should be used.
pub trait MontConfig<const N: usize>: 'static + Sync + Send + Sized {
/// The modulus of the field.
const MODULUS: BigInt<N>;
/// Let `M` be the power of 2^64 nearest to `Self::MODULUS_BITS`. Then
/// `R = M % Self::MODULUS`.
const R: BigInt<N> = Self::MODULUS.montgomery_r();
/// R2 = R^2 % Self::MODULUS
const R2: BigInt<N> = Self::MODULUS.montgomery_r2();
/// INV = -MODULUS^{-1} mod 2^64
const INV: u64 = inv::<Self, N>();
/// A multiplicative generator of the field.
/// `Self::GENERATOR` is an element having multiplicative order
/// `Self::MODULUS - 1`.
const GENERATOR: Fp<MontBackend<Self, N>, N>;
/// Can we use the no-carry optimization for multiplication
/// outlined [here](https://hackmd.io/@gnark/modular_multiplication)?
///
/// This optimization applies if
/// (a) `Self::MODULUS[N-1] < u64::MAX >> 1`, and
/// (b) the bits of the modulus are not all 1.
#[doc(hidden)]
const CAN_USE_NO_CARRY_MUL_OPT: bool = can_use_no_carry_mul_optimization::<Self, N>();
/// Can we use the no-carry optimization for squaring
/// outlined [here](https://hackmd.io/@gnark/modular_multiplication)?
///
/// This optimization applies if
/// (a) `Self::MODULUS[N-1] < u64::MAX >> 2`, and
/// (b) the bits of the modulus are not all 1.
#[doc(hidden)]
const CAN_USE_NO_CARRY_SQUARE_OPT: bool = can_use_no_carry_mul_optimization::<Self, N>();
/// Does the modulus have a spare unused bit
///
/// This condition applies if
/// (a) `Self::MODULUS[N-1] >> 63 == 0`
#[doc(hidden)]
const MODULUS_HAS_SPARE_BIT: bool = modulus_has_spare_bit::<Self, N>();
/// 2^s root of unity computed by GENERATOR^t
const TWO_ADIC_ROOT_OF_UNITY: Fp<MontBackend<Self, N>, N>;
/// An integer `b` such that there exists a multiplicative subgroup
/// of size `b^k` for some integer `k`.
const SMALL_SUBGROUP_BASE: Option<u32> = None;
/// The integer `k` such that there exists a multiplicative subgroup
/// of size `Self::SMALL_SUBGROUP_BASE^k`.
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None;
/// GENERATOR^((MODULUS-1) / (2^s *
/// SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)).
/// Used for mixed-radix FFT.
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<MontBackend<Self, N>, N>> = None;
/// Precomputed material for use when computing square roots.
/// The default is to use the standard Tonelli-Shanks algorithm.
const SQRT_PRECOMP: Option<SqrtPrecomputation<Fp<MontBackend<Self, N>, N>>> =
sqrt_precomputation::<N, Self>();
/// (MODULUS + 1) / 4 when MODULUS % 4 == 3. Used for square root precomputations.
#[doc(hidden)]
const MODULUS_PLUS_ONE_DIV_FOUR: Option<BigInt<N>> = {
match Self::MODULUS.mod_4() == 3 {
true => {
let (modulus_plus_one, carry) =
Self::MODULUS.const_add_with_carry(&BigInt::<N>::one());
let mut result = modulus_plus_one.divide_by_2_round_down();
// Since modulus_plus_one is even, dividing by 2 results in a MSB of 0.
// Thus we can set MSB to `carry` to get the correct result of (MODULUS + 1) // 2:
result.0[N - 1] |= (carry as u64) << 63;
Some(result.divide_by_2_round_down())
},
false => None,
}
};
/// Sets `a = a + b`.
#[inline(always)]
fn add_assign(a: &mut Fp<MontBackend<Self, N>, N>, b: &Fp<MontBackend<Self, N>, N>) {
// This cannot exceed the backing capacity.
let c = a.0.add_with_carry(&b.0);
// However, it may need to be reduced
if Self::MODULUS_HAS_SPARE_BIT {
a.subtract_modulus()
} else {
a.subtract_modulus_with_carry(c)
}
}
/// Sets `a = a - b`.
#[inline(always)]
fn sub_assign(a: &mut Fp<MontBackend<Self, N>, N>, b: &Fp<MontBackend<Self, N>, N>) {
// If `other` is larger than `self`, add the modulus to self first.
if b.0 > a.0 {
a.0.add_with_carry(&Self::MODULUS);
}
a.0.sub_with_borrow(&b.0);
}
/// Sets `a = 2 * a`.
#[inline(always)]
fn double_in_place(a: &mut Fp<MontBackend<Self, N>, N>) {
// This cannot exceed the backing capacity.
let c = a.0.mul2();
// However, it may need to be reduced.
if Self::MODULUS_HAS_SPARE_BIT {
a.subtract_modulus()
} else {
a.subtract_modulus_with_carry(c)
}
}
/// Sets `a = -a`.
#[inline(always)]
fn neg_in_place(a: &mut Fp<MontBackend<Self, N>, N>) {
if !a.is_zero() {
let mut tmp = Self::MODULUS;
tmp.sub_with_borrow(&a.0);
a.0 = tmp;
}
}
/// This modular multiplication algorithm uses Montgomery
/// reduction for efficient implementation. It also additionally
/// uses the "no-carry optimization" outlined
/// [here](https://hackmd.io/@gnark/modular_multiplication) if
/// `Self::MODULUS` has (a) a non-zero MSB, and (b) at least one
/// zero bit in the rest of the modulus.
#[unroll_for_loops(12)]
#[inline(always)]
fn mul_assign(a: &mut Fp<MontBackend<Self, N>, N>, b: &Fp<MontBackend<Self, N>, N>) {
// No-carry optimisation applied to CIOS
if Self::CAN_USE_NO_CARRY_MUL_OPT {
if N <= 6
&& N > 1
&& cfg!(all(
feature = "asm",
target_feature = "bmi2",
target_feature = "adx",
target_arch = "x86_64"
))
{
#[cfg(
all(
feature = "asm",
target_feature = "bmi2",
target_feature = "adx",
target_arch = "x86_64"
)
)]
#[allow(unsafe_code, unused_mut)]
#[rustfmt::skip]
// Tentatively avoid using assembly for `N == 1`.
match N {
2 => { ark_ff_asm::x86_64_asm_mul!(2, (a.0).0, (b.0).0); },
3 => { ark_ff_asm::x86_64_asm_mul!(3, (a.0).0, (b.0).0); },
4 => { ark_ff_asm::x86_64_asm_mul!(4, (a.0).0, (b.0).0); },
5 => { ark_ff_asm::x86_64_asm_mul!(5, (a.0).0, (b.0).0); },
6 => { ark_ff_asm::x86_64_asm_mul!(6, (a.0).0, (b.0).0); },
_ => unsafe { ark_std::hint::unreachable_unchecked() },
};
} else {
let mut r = [0u64; N];
for i in 0..N {
let mut carry1 = 0u64;
r[0] = fa::mac(r[0], (a.0).0[0], (b.0).0[i], &mut carry1);
let k = r[0].wrapping_mul(Self::INV);
let mut carry2 = 0u64;
fa::mac_discard(r[0], k, Self::MODULUS.0[0], &mut carry2);
for j in 1..N {
r[j] = fa::mac_with_carry(r[j], (a.0).0[j], (b.0).0[i], &mut carry1);
r[j - 1] = fa::mac_with_carry(r[j], k, Self::MODULUS.0[j], &mut carry2);
}
r[N - 1] = carry1 + carry2;
}
(a.0).0 = r;
}
a.subtract_modulus();
} else {
// Alternative implementation
// Implements CIOS.
let (carry, res) = a.mul_without_cond_subtract(b);
*a = res;
if Self::MODULUS_HAS_SPARE_BIT {
a.subtract_modulus_with_carry(carry);
} else {
a.subtract_modulus();
}
}
}
#[inline(always)]
#[unroll_for_loops(12)]
fn square_in_place(a: &mut Fp<MontBackend<Self, N>, N>) {
if N == 1 {
// We default to multiplying with `a` using the `Mul` impl
// for the N == 1 case
*a *= *a;
return;
}
if Self::CAN_USE_NO_CARRY_SQUARE_OPT
&& (2..=6).contains(&N)
&& cfg!(all(
feature = "asm",
target_feature = "bmi2",
target_feature = "adx",
target_arch = "x86_64"
))
{
#[cfg(all(
feature = "asm",
target_feature = "bmi2",
target_feature = "adx",
target_arch = "x86_64"
))]
#[allow(unsafe_code, unused_mut)]
#[rustfmt::skip]
match N {
2 => { ark_ff_asm::x86_64_asm_square!(2, (a.0).0); },
3 => { ark_ff_asm::x86_64_asm_square!(3, (a.0).0); },
4 => { ark_ff_asm::x86_64_asm_square!(4, (a.0).0); },
5 => { ark_ff_asm::x86_64_asm_square!(5, (a.0).0); },
6 => { ark_ff_asm::x86_64_asm_square!(6, (a.0).0); },
_ => unsafe { ark_std::hint::unreachable_unchecked() },
};
a.subtract_modulus();
return;
}
let mut r = crate::const_helpers::MulBuffer::<N>::zeroed();
let mut carry = 0;
for i in 0..(N - 1) {
for j in (i + 1)..N {
r[i + j] = fa::mac_with_carry(r[i + j], (a.0).0[i], (a.0).0[j], &mut carry);
}
r.b1[i] = carry;
carry = 0;
}
r.b1[N - 1] = r.b1[N - 2] >> 63;
for i in 2..(2 * N - 1) {
r[2 * N - i] = (r[2 * N - i] << 1) | (r[2 * N - (i + 1)] >> 63);
}
r.b0[1] <<= 1;
for i in 0..N {
r[2 * i] = fa::mac_with_carry(r[2 * i], (a.0).0[i], (a.0).0[i], &mut carry);
carry = fa::adc(&mut r[2 * i + 1], 0, carry);
}
// Montgomery reduction
let mut carry2 = 0;
for i in 0..N {
let k = r[i].wrapping_mul(Self::INV);
let mut carry = 0;
fa::mac_discard(r[i], k, Self::MODULUS.0[0], &mut carry);
for j in 1..N {
r[j + i] = fa::mac_with_carry(r[j + i], k, Self::MODULUS.0[j], &mut carry);
}
carry2 = fa::adc(&mut r.b1[i], carry, carry2);
}
(a.0).0.copy_from_slice(&r.b1);
if Self::MODULUS_HAS_SPARE_BIT {
a.subtract_modulus();
} else {
a.subtract_modulus_with_carry(carry2 != 0);
}
}
fn inverse(a: &Fp<MontBackend<Self, N>, N>) -> Option<Fp<MontBackend<Self, N>, N>> {
if a.is_zero() {
None
} else {
// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to
// Cryptography
// Algorithm 16 (BEA for Inversion in Fp)
let one = BigInt::from(1u64);
let mut u = a.0;
let mut v = Self::MODULUS;
let mut b = Fp::new_unchecked(Self::R2); // Avoids unnecessary reduction step.
let mut c = Fp::zero();
while u != one && v != one {
while u.is_even() {
u.div2();
if b.0.is_even() {
b.0.div2();
} else {
let carry = b.0.add_with_carry(&Self::MODULUS);
b.0.div2();
if !Self::MODULUS_HAS_SPARE_BIT && carry {
(b.0).0[N - 1] |= 1 << 63;
}
}
}
while v.is_even() {
v.div2();
if c.0.is_even() {
c.0.div2();
} else {
let carry = c.0.add_with_carry(&Self::MODULUS);
c.0.div2();
if !Self::MODULUS_HAS_SPARE_BIT && carry {
(c.0).0[N - 1] |= 1 << 63;
}
}
}
if v < u {
u.sub_with_borrow(&v);
b -= &c;
} else {
v.sub_with_borrow(&u);
c -= &b;
}
}
if u == one {
Some(b)
} else {
Some(c)
}
}
}
fn from_bigint(r: BigInt<N>) -> Option<Fp<MontBackend<Self, N>, N>> {
let mut r = Fp::new_unchecked(r);
if r.is_zero() {
Some(r)
} else if r.is_geq_modulus() {
None
} else {
r *= &Fp::new_unchecked(Self::R2);
Some(r)
}
}
#[inline]
#[unroll_for_loops(12)]
#[allow(clippy::modulo_one)]
fn into_bigint(a: Fp<MontBackend<Self, N>, N>) -> BigInt<N> {
let mut tmp = a.0;
let mut r = tmp.0;
// Montgomery Reduction
for i in 0..N {
let k = r[i].wrapping_mul(Self::INV);
let mut carry = 0;
fa::mac_with_carry(r[i], k, Self::MODULUS.0[0], &mut carry);
for j in 1..N {
r[(j + i) % N] =
fa::mac_with_carry(r[(j + i) % N], k, Self::MODULUS.0[j], &mut carry);
}
r[i % N] = carry;
}
tmp.0 = r;
tmp
}
#[unroll_for_loops(12)]
fn sum_of_products<const M: usize>(
a: &[Fp<MontBackend<Self, N>, N>; M],
b: &[Fp<MontBackend<Self, N>, N>; M],
) -> Fp<MontBackend<Self, N>, N> {
// Adapted from https://github.com/zkcrypto/bls12_381/pull/84 by @str4d.
// For a single `a x b` multiplication, operand scanning (schoolbook) takes each
// limb of `a` in turn, and multiplies it by all of the limbs of `b` to compute
// the result as a double-width intermediate representation, which is then fully
// reduced at the carry. Here however we have pairs of multiplications (a_i, b_i),
// the results of which are summed.
//
// The intuition for this algorithm is two-fold:
// - We can interleave the operand scanning for each pair, by processing the jth
// limb of each `a_i` together. As these have the same offset within the overall
// operand scanning flow, their results can be summed directly.
// - We can interleave the multiplication and reduction steps, resulting in a
// single bitshift by the limb size after each iteration. This means we only
// need to store a single extra limb overall, instead of keeping around all the
// intermediate results and eventually having twice as many limbs.
let modulus_size = Self::MODULUS.const_num_bits() as usize;
if modulus_size >= 64 * N - 1 {
a.iter().zip(b).map(|(a, b)| *a * b).sum()
} else if M == 2 {
// Algorithm 2, line 2
let result = (0..N).fold(BigInt::zero(), |mut result, j| {
// Algorithm 2, line 3
let mut carry_a = 0;
let mut carry_b = 0;
for (a, b) in a.iter().zip(b) {
let a = &a.0;
let b = &b.0;
let mut carry2 = 0;
result.0[0] = fa::mac(result.0[0], a.0[j], b.0[0], &mut carry2);
for k in 1..N {
result.0[k] = fa::mac_with_carry(result.0[k], a.0[j], b.0[k], &mut carry2);
}
carry_b = fa::adc(&mut carry_a, carry_b, carry2);
}
let k = result.0[0].wrapping_mul(Self::INV);
let mut carry2 = 0;
fa::mac_discard(result.0[0], k, Self::MODULUS.0[0], &mut carry2);
for i in 1..N {
result.0[i - 1] =
fa::mac_with_carry(result.0[i], k, Self::MODULUS.0[i], &mut carry2);
}
result.0[N - 1] = fa::adc_no_carry(carry_a, carry_b, &mut carry2);
result
});
let mut result = Fp::new_unchecked(result);
result.subtract_modulus();
debug_assert_eq!(
a.iter().zip(b).map(|(a, b)| *a * b).sum::<Fp<_, N>>(),
result
);
result
} else {
let chunk_size = 2 * (N * 64 - modulus_size) - 1;
// chunk_size is at least 1, since MODULUS_BIT_SIZE is at most N * 64 - 1.
a.chunks(chunk_size)
.zip(b.chunks(chunk_size))
.map(|(a, b)| {
// Algorithm 2, line 2
let result = (0..N).fold(BigInt::zero(), |mut result, j| {
// Algorithm 2, line 3
let (temp, carry) = a.iter().zip(b).fold(
(result, 0),
|(mut temp, mut carry), (Fp(a, _), Fp(b, _))| {
let mut carry2 = 0;
temp.0[0] = fa::mac(temp.0[0], a.0[j], b.0[0], &mut carry2);
for k in 1..N {
temp.0[k] =
fa::mac_with_carry(temp.0[k], a.0[j], b.0[k], &mut carry2);
}
carry = fa::adc_no_carry(carry, 0, &mut carry2);
(temp, carry)
},
);
let k = temp.0[0].wrapping_mul(Self::INV);
let mut carry2 = 0;
fa::mac_discard(temp.0[0], k, Self::MODULUS.0[0], &mut carry2);
for i in 1..N {
result.0[i - 1] =
fa::mac_with_carry(temp.0[i], k, Self::MODULUS.0[i], &mut carry2);
}
result.0[N - 1] = fa::adc_no_carry(carry, 0, &mut carry2);
result
});
let mut result = Fp::new_unchecked(result);
result.subtract_modulus();
debug_assert_eq!(
a.iter().zip(b).map(|(a, b)| *a * b).sum::<Fp<_, N>>(),
result
);
result
})
.sum()
}
}
}
/// Compute -M^{-1} mod 2^64.
pub const fn inv<T: MontConfig<N>, const N: usize>() -> u64 {
// We compute this as follows.
// First, MODULUS mod 2^64 is just the lower 64 bits of MODULUS.
// Hence MODULUS mod 2^64 = MODULUS.0[0] mod 2^64.
//
// Next, computing the inverse mod 2^64 involves exponentiating by
// the multiplicative group order, which is euler_totient(2^64) - 1.
// Now, euler_totient(2^64) = 1 << 63, and so
// euler_totient(2^64) - 1 = (1 << 63) - 1 = 1111111... (63 digits).
// We compute this powering via standard square and multiply.
let mut inv = 1u64;
crate::const_for!((_i in 0..63) {
// Square
inv = inv.wrapping_mul(inv);
// Multiply
inv = inv.wrapping_mul(T::MODULUS.0[0]);
});
inv.wrapping_neg()
}
#[inline]
pub const fn can_use_no_carry_mul_optimization<T: MontConfig<N>, const N: usize>() -> bool {
// Checking the modulus at compile time
let top_bit_is_zero = T::MODULUS.0[N - 1] >> 63 == 0;
let mut all_remaining_bits_are_one = T::MODULUS.0[N - 1] == u64::MAX >> 1;
crate::const_for!((i in 1..N) {
all_remaining_bits_are_one &= T::MODULUS.0[N - i - 1] == u64::MAX;
});
top_bit_is_zero && !all_remaining_bits_are_one
}
#[inline]
pub const fn modulus_has_spare_bit<T: MontConfig<N>, const N: usize>() -> bool {
T::MODULUS.0[N - 1] >> 63 == 0
}
#[inline]
pub const fn can_use_no_carry_square_optimization<T: MontConfig<N>, const N: usize>() -> bool {
// Checking the modulus at compile time
let top_two_bits_are_zero = T::MODULUS.0[N - 1] >> 62 == 0;
let mut all_remaining_bits_are_one = T::MODULUS.0[N - 1] == u64::MAX >> 2;
crate::const_for!((i in 1..N) {
all_remaining_bits_are_one &= T::MODULUS.0[N - i - 1] == u64::MAX;
});
top_two_bits_are_zero && !all_remaining_bits_are_one
}
pub const fn sqrt_precomputation<const N: usize, T: MontConfig<N>>(
) -> Option<SqrtPrecomputation<Fp<MontBackend<T, N>, N>>> {
match T::MODULUS.mod_4() {
3 => match T::MODULUS_PLUS_ONE_DIV_FOUR.as_ref() {
Some(BigInt(modulus_plus_one_div_four)) => Some(SqrtPrecomputation::Case3Mod4 {
modulus_plus_one_div_four,
}),
None => None,
},
_ => Some(SqrtPrecomputation::TonelliShanks {
two_adicity: <MontBackend<T, N>>::TWO_ADICITY,
quadratic_nonresidue_to_trace: T::TWO_ADIC_ROOT_OF_UNITY,
trace_of_modulus_minus_one_div_two:
&<Fp<MontBackend<T, N>, N>>::TRACE_MINUS_ONE_DIV_TWO.0,
}),
}
}
/// Construct a [`Fp<MontBackend<T, N>, N>`] element from a literal string. This
/// should be used primarily for constructing constant field elements; in a
/// non-const context, [`Fp::from_str`](`ark_std::str::FromStr::from_str`) is
/// preferable.
///
/// # Panics
///
/// If the integer represented by the string cannot fit in the number
/// of limbs of the `Fp`, this macro results in a
/// * compile-time error if used in a const context
/// * run-time error otherwise.
///
/// # Usage
///
/// ```rust
/// # use ark_test_curves::{MontFp, One};
/// # use ark_test_curves::bls12_381 as ark_bls12_381;
/// # use ark_std::str::FromStr;
/// use ark_bls12_381::Fq;
/// const ONE: Fq = MontFp!("1");
/// const NEG_ONE: Fq = MontFp!("-1");
///
/// fn check_correctness() {
/// assert_eq!(ONE, Fq::one());
/// assert_eq!(Fq::from_str("1").unwrap(), ONE);
/// assert_eq!(NEG_ONE, -Fq::one());
/// }
/// ```
#[macro_export]
macro_rules! MontFp {
($c0:expr) => {{
let (is_positive, limbs) = $crate::ark_ff_macros::to_sign_and_limbs!($c0);
$crate::Fp::from_sign_and_limbs(is_positive, &limbs)
}};
}
pub use ark_ff_macros::MontConfig;
pub use MontFp;
pub struct MontBackend<T: MontConfig<N>, const N: usize>(PhantomData<T>);
impl<T: MontConfig<N>, const N: usize> FpConfig<N> for MontBackend<T, N> {
/// The modulus of the field.
const MODULUS: crate::BigInt<N> = T::MODULUS;
/// A multiplicative generator of the field.
/// `Self::GENERATOR` is an element having multiplicative order
/// `Self::MODULUS - 1`.
const GENERATOR: Fp<Self, N> = T::GENERATOR;
/// Additive identity of the field, i.e. the element `e`
/// such that, for all elements `f` of the field, `e + f = f`.
const ZERO: Fp<Self, N> = Fp::new_unchecked(BigInt([0u64; N]));
/// Multiplicative identity of the field, i.e. the element `e`
/// such that, for all elements `f` of the field, `e * f = f`.
const ONE: Fp<Self, N> = Fp::new_unchecked(T::R);
const TWO_ADICITY: u32 = Self::MODULUS.two_adic_valuation();
const TWO_ADIC_ROOT_OF_UNITY: Fp<Self, N> = T::TWO_ADIC_ROOT_OF_UNITY;
const SMALL_SUBGROUP_BASE: Option<u32> = T::SMALL_SUBGROUP_BASE;
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = T::SMALL_SUBGROUP_BASE_ADICITY;
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<Self, N>> = T::LARGE_SUBGROUP_ROOT_OF_UNITY;
const SQRT_PRECOMP: Option<crate::SqrtPrecomputation<Fp<Self, N>>> = T::SQRT_PRECOMP;
fn add_assign(a: &mut Fp<Self, N>, b: &Fp<Self, N>) {
T::add_assign(a, b)
}
fn sub_assign(a: &mut Fp<Self, N>, b: &Fp<Self, N>) {
T::sub_assign(a, b)
}
fn double_in_place(a: &mut Fp<Self, N>) {
T::double_in_place(a)
}
fn neg_in_place(a: &mut Fp<Self, N>) {
T::neg_in_place(a)
}
/// This modular multiplication algorithm uses Montgomery
/// reduction for efficient implementation. It also additionally
/// uses the "no-carry optimization" outlined
/// [here](https://hackmd.io/@zkteam/modular_multiplication) if
/// `P::MODULUS` has (a) a non-zero MSB, and (b) at least one
/// zero bit in the rest of the modulus.
#[inline]
fn mul_assign(a: &mut Fp<Self, N>, b: &Fp<Self, N>) {
T::mul_assign(a, b)
}
fn sum_of_products<const M: usize>(a: &[Fp<Self, N>; M], b: &[Fp<Self, N>; M]) -> Fp<Self, N> {
T::sum_of_products(a, b)
}
#[inline]
#[allow(unused_braces, clippy::absurd_extreme_comparisons)]
fn square_in_place(a: &mut Fp<Self, N>) {
T::square_in_place(a)
}
fn inverse(a: &Fp<Self, N>) -> Option<Fp<Self, N>> {
T::inverse(a)
}
fn from_bigint(r: BigInt<N>) -> Option<Fp<Self, N>> {
T::from_bigint(r)
}
#[inline]
#[allow(clippy::modulo_one)]
fn into_bigint(a: Fp<Self, N>) -> BigInt<N> {
T::into_bigint(a)
}
}
impl<T: MontConfig<N>, const N: usize> Fp<MontBackend<T, N>, N> {
#[doc(hidden)]
pub const R: BigInt<N> = T::R;
#[doc(hidden)]
pub const R2: BigInt<N> = T::R2;
#[doc(hidden)]
pub const INV: u64 = T::INV;
/// Construct a new field element from its underlying
/// [`struct@BigInt`] data type.
#[inline]
pub const fn new(element: BigInt<N>) -> Self {
let mut r = Self(element, PhantomData);
if r.const_is_zero() {
r
} else {
r = r.mul(&Fp(T::R2, PhantomData));
r
}
}
/// Construct a new field element from its underlying
/// [`struct@BigInt`] data type.
///
/// Unlike [`Self::new`], this method does not perform Montgomery reduction.
/// Thus, this method should be used only when constructing
/// an element from an integer that has already been put in
/// Montgomery form.
#[inline]
pub const fn new_unchecked(element: BigInt<N>) -> Self {
Self(element, PhantomData)
}
const fn const_is_zero(&self) -> bool {
self.0.const_is_zero()
}
#[doc(hidden)]
const fn const_neg(self) -> Self {
if !self.const_is_zero() {
Self::new_unchecked(Self::sub_with_borrow(&T::MODULUS, &self.0))
} else {
self
}
}
/// Interpret a set of limbs (along with a sign) as a field element.
/// For *internal* use only; please use the `ark_ff::MontFp` macro instead
/// of this method
#[doc(hidden)]
pub const fn from_sign_and_limbs(is_positive: bool, limbs: &[u64]) -> Self {
let mut repr = BigInt::<N>([0; N]);
assert!(limbs.len() <= N);
crate::const_for!((i in 0..(limbs.len())) {
repr.0[i] = limbs[i];
});
let res = Self::new(repr);
if is_positive {
res
} else {
res.const_neg()
}
}
const fn mul_without_cond_subtract(mut self, other: &Self) -> (bool, Self) {
let (mut lo, mut hi) = ([0u64; N], [0u64; N]);
crate::const_for!((i in 0..N) {
let mut carry = 0;
crate::const_for!((j in 0..N) {
let k = i + j;
if k >= N {
hi[k - N] = mac_with_carry!(hi[k - N], (self.0).0[i], (other.0).0[j], &mut carry);
} else {
lo[k] = mac_with_carry!(lo[k], (self.0).0[i], (other.0).0[j], &mut carry);
}
});
hi[i] = carry;
});
// Montgomery reduction
let mut carry2 = 0;
crate::const_for!((i in 0..N) {
let tmp = lo[i].wrapping_mul(T::INV);
let mut carry;
mac!(lo[i], tmp, T::MODULUS.0[0], &mut carry);
crate::const_for!((j in 1..N) {
let k = i + j;
if k >= N {
hi[k - N] = mac_with_carry!(hi[k - N], tmp, T::MODULUS.0[j], &mut carry);
} else {
lo[k] = mac_with_carry!(lo[k], tmp, T::MODULUS.0[j], &mut carry);
}
});
hi[i] = adc!(hi[i], carry, &mut carry2);
});
crate::const_for!((i in 0..N) {
(self.0).0[i] = hi[i];
});
(carry2 != 0, self)
}
const fn mul(self, other: &Self) -> Self {
let (carry, res) = self.mul_without_cond_subtract(other);
if T::MODULUS_HAS_SPARE_BIT {
res.const_subtract_modulus()
} else {
res.const_subtract_modulus_with_carry(carry)
}
}
const fn const_is_valid(&self) -> bool {
crate::const_for!((i in 0..N) {
if (self.0).0[N - i - 1] < T::MODULUS.0[N - i - 1] {
return true
} else if (self.0).0[N - i - 1] > T::MODULUS.0[N - i - 1] {
return false
}
});
false
}
#[inline]
const fn const_subtract_modulus(mut self) -> Self {
if !self.const_is_valid() {
self.0 = Self::sub_with_borrow(&self.0, &T::MODULUS);
}
self
}
#[inline]
const fn const_subtract_modulus_with_carry(mut self, carry: bool) -> Self {
if carry || !self.const_is_valid() {
self.0 = Self::sub_with_borrow(&self.0, &T::MODULUS);
}
self
}
const fn sub_with_borrow(a: &BigInt<N>, b: &BigInt<N>) -> BigInt<N> {
a.const_sub_with_borrow(b).0
}
}
#[cfg(test)]
mod test {
use ark_std::{str::FromStr, vec::Vec};
use ark_test_curves::secp256k1::Fr;
use num_bigint::{BigInt, BigUint, Sign};
#[test]
fn test_mont_macro_correctness() {
let (is_positive, limbs) = str_to_limbs_u64(
"111192936301596926984056301862066282284536849596023571352007112326586892541694",
);
let t = Fr::from_sign_and_limbs(is_positive, &limbs);
let result: BigUint = t.into();
let expected = BigUint::from_str(
"111192936301596926984056301862066282284536849596023571352007112326586892541694",
)
.unwrap();
assert_eq!(result, expected);
}
fn str_to_limbs_u64(num: &str) -> (bool, Vec<u64>) {
let (sign, digits) = BigInt::from_str(num)
.expect("could not parse to bigint")
.to_radix_le(16);
let limbs = digits
.chunks(16)
.map(|chunk| {
let mut this = 0u64;
for (i, hexit) in chunk.iter().enumerate() {
this += (*hexit as u64) << (4 * i);
}
this
})
.collect::<Vec<_>>();
let sign_is_positive = sign != Sign::Minus;
(sign_is_positive, limbs)
}
}