ark_ff/biginteger/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
use crate::{
bits::{BitIteratorBE, BitIteratorLE},
const_for, UniformRand,
};
#[allow(unused)]
use ark_ff_macros::unroll_for_loops;
use ark_serialize::{
CanonicalDeserialize, CanonicalSerialize, Compress, SerializationError, Valid, Validate,
};
use ark_std::{
convert::TryFrom,
fmt::{Debug, Display, UpperHex},
io::{Read, Write},
rand::{
distributions::{Distribution, Standard},
Rng,
},
vec::Vec,
};
use num_bigint::BigUint;
use zeroize::Zeroize;
#[macro_use]
pub mod arithmetic;
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, Zeroize)]
pub struct BigInt<const N: usize>(pub [u64; N]);
impl<const N: usize> Default for BigInt<N> {
fn default() -> Self {
Self([0u64; N])
}
}
impl<const N: usize> CanonicalSerialize for BigInt<N> {
fn serialize_with_mode<W: Write>(
&self,
writer: W,
compress: Compress,
) -> Result<(), SerializationError> {
self.0.serialize_with_mode(writer, compress)
}
fn serialized_size(&self, compress: Compress) -> usize {
self.0.serialized_size(compress)
}
}
impl<const N: usize> Valid for BigInt<N> {
fn check(&self) -> Result<(), SerializationError> {
self.0.check()
}
}
impl<const N: usize> CanonicalDeserialize for BigInt<N> {
fn deserialize_with_mode<R: Read>(
reader: R,
compress: Compress,
validate: Validate,
) -> Result<Self, SerializationError> {
Ok(BigInt::<N>(<[u64; N]>::deserialize_with_mode(
reader, compress, validate,
)?))
}
}
/// Construct a [`struct@BigInt<N>`] element from a literal string.
///
/// # Panics
///
/// If the integer represented by the string cannot fit in the number
/// of limbs of the `BigInt`, this macro results in a
/// * compile-time error if used in a const context
/// * run-time error otherwise.
///
/// # Usage
/// ```rust
/// # use ark_ff::BigInt;
/// const ONE: BigInt<6> = BigInt!("1");
///
/// fn check_correctness() {
/// assert_eq!(ONE, BigInt::from(1u8));
/// }
/// ```
#[macro_export]
macro_rules! BigInt {
($c0:expr) => {{
let (is_positive, limbs) = $crate::ark_ff_macros::to_sign_and_limbs!($c0);
assert!(is_positive);
let mut integer = $crate::BigInt::zero();
assert!(integer.0.len() >= limbs.len());
$crate::const_for!((i in 0..(limbs.len())) {
integer.0[i] = limbs[i];
});
integer
}};
}
#[doc(hidden)]
macro_rules! const_modulo {
($a:expr, $divisor:expr) => {{
// Stupid slow base-2 long division taken from
// https://en.wikipedia.org/wiki/Division_algorithm
assert!(!$divisor.const_is_zero());
let mut remainder = Self::new([0u64; N]);
let end = $a.num_bits();
let mut i = (end - 1) as isize;
let mut carry;
while i >= 0 {
(remainder, carry) = remainder.const_mul2_with_carry();
remainder.0[0] |= $a.get_bit(i as usize) as u64;
if remainder.const_geq($divisor) || carry {
let (r, borrow) = remainder.const_sub_with_borrow($divisor);
remainder = r;
assert!(borrow == carry);
}
i -= 1;
}
remainder
}};
}
impl<const N: usize> BigInt<N> {
pub const fn new(value: [u64; N]) -> Self {
Self(value)
}
pub const fn zero() -> Self {
Self([0u64; N])
}
pub const fn one() -> Self {
let mut one = Self::zero();
one.0[0] = 1;
one
}
#[doc(hidden)]
pub const fn const_is_even(&self) -> bool {
self.0[0] % 2 == 0
}
#[doc(hidden)]
pub const fn const_is_odd(&self) -> bool {
self.0[0] % 2 == 1
}
#[doc(hidden)]
pub const fn mod_4(&self) -> u8 {
// To compute n % 4, we need to simply look at the
// 2 least significant bits of n, and check their value mod 4.
(((self.0[0] << 62) >> 62) % 4) as u8
}
/// Compute a right shift of `self`
/// This is equivalent to a (saturating) division by 2.
#[doc(hidden)]
pub const fn const_shr(&self) -> Self {
let mut result = *self;
let mut t = 0;
crate::const_for!((i in 0..N) {
let a = result.0[N - i - 1];
let t2 = a << 63;
result.0[N - i - 1] >>= 1;
result.0[N - i - 1] |= t;
t = t2;
});
result
}
const fn const_geq(&self, other: &Self) -> bool {
const_for!((i in 0..N) {
let a = self.0[N - i - 1];
let b = other.0[N - i - 1];
if a < b {
return false;
} else if a > b {
return true;
}
});
true
}
/// Compute the largest integer `s` such that `self = 2**s * t + 1` for odd `t`.
#[doc(hidden)]
pub const fn two_adic_valuation(mut self) -> u32 {
let mut two_adicity = 0;
assert!(self.const_is_odd());
// Since `self` is odd, we can always subtract one
// without a borrow
self.0[0] -= 1;
while self.const_is_even() {
self = self.const_shr();
two_adicity += 1;
}
two_adicity
}
/// Compute the smallest odd integer `t` such that `self = 2**s * t + 1` for some
/// integer `s = self.two_adic_valuation()`.
#[doc(hidden)]
pub const fn two_adic_coefficient(mut self) -> Self {
assert!(self.const_is_odd());
// Since `self` is odd, we can always subtract one
// without a borrow
self.0[0] -= 1;
while self.const_is_even() {
self = self.const_shr();
}
assert!(self.const_is_odd());
self
}
/// Divide `self` by 2, rounding down if necessary.
/// That is, if `self.is_odd()`, compute `(self - 1)/2`.
/// Else, compute `self/2`.
#[doc(hidden)]
pub const fn divide_by_2_round_down(mut self) -> Self {
if self.const_is_odd() {
self.0[0] -= 1;
}
self.const_shr()
}
/// Find the number of bits in the binary decomposition of `self`.
#[doc(hidden)]
pub const fn const_num_bits(self) -> u32 {
((N - 1) * 64) as u32 + (64 - self.0[N - 1].leading_zeros())
}
#[inline]
pub(crate) const fn const_sub_with_borrow(mut self, other: &Self) -> (Self, bool) {
let mut borrow = 0;
const_for!((i in 0..N) {
self.0[i] = sbb!(self.0[i], other.0[i], &mut borrow);
});
(self, borrow != 0)
}
#[inline]
pub(crate) const fn const_add_with_carry(mut self, other: &Self) -> (Self, bool) {
let mut carry = 0;
crate::const_for!((i in 0..N) {
self.0[i] = adc!(self.0[i], other.0[i], &mut carry);
});
(self, carry != 0)
}
const fn const_mul2_with_carry(mut self) -> (Self, bool) {
let mut last = 0;
crate::const_for!((i in 0..N) {
let a = self.0[i];
let tmp = a >> 63;
self.0[i] <<= 1;
self.0[i] |= last;
last = tmp;
});
(self, last != 0)
}
pub(crate) const fn const_is_zero(&self) -> bool {
let mut is_zero = true;
crate::const_for!((i in 0..N) {
is_zero &= self.0[i] == 0;
});
is_zero
}
/// Computes the Montgomery R constant modulo `self`.
#[doc(hidden)]
pub const fn montgomery_r(&self) -> Self {
let two_pow_n_times_64 = crate::const_helpers::RBuffer::<N>([0u64; N], 1);
const_modulo!(two_pow_n_times_64, self)
}
/// Computes the Montgomery R2 constant modulo `self`.
#[doc(hidden)]
pub const fn montgomery_r2(&self) -> Self {
let two_pow_n_times_64_square =
crate::const_helpers::R2Buffer::<N>([0u64; N], [0u64; N], 1);
const_modulo!(two_pow_n_times_64_square, self)
}
}
impl<const N: usize> BigInteger for BigInt<N> {
const NUM_LIMBS: usize = N;
#[inline]
fn add_with_carry(&mut self, other: &Self) -> bool {
{
use arithmetic::adc_for_add_with_carry as adc;
let a = &mut self.0;
let b = &other.0;
let mut carry = 0;
if N >= 1 {
carry = adc(&mut a[0], b[0], carry);
}
if N >= 2 {
carry = adc(&mut a[1], b[1], carry);
}
if N >= 3 {
carry = adc(&mut a[2], b[2], carry);
}
if N >= 4 {
carry = adc(&mut a[3], b[3], carry);
}
if N >= 5 {
carry = adc(&mut a[4], b[4], carry);
}
if N >= 6 {
carry = adc(&mut a[5], b[5], carry);
}
for i in 6..N {
carry = adc(&mut a[i], b[i], carry);
}
carry != 0
}
}
#[inline]
fn sub_with_borrow(&mut self, other: &Self) -> bool {
use arithmetic::sbb_for_sub_with_borrow as sbb;
let a = &mut self.0;
let b = &other.0;
let mut borrow = 0u8;
if N >= 1 {
borrow = sbb(&mut a[0], b[0], borrow);
}
if N >= 2 {
borrow = sbb(&mut a[1], b[1], borrow);
}
if N >= 3 {
borrow = sbb(&mut a[2], b[2], borrow);
}
if N >= 4 {
borrow = sbb(&mut a[3], b[3], borrow);
}
if N >= 5 {
borrow = sbb(&mut a[4], b[4], borrow);
}
if N >= 6 {
borrow = sbb(&mut a[5], b[5], borrow);
}
for i in 6..N {
borrow = sbb(&mut a[i], b[i], borrow);
}
borrow != 0
}
#[inline]
#[allow(unused)]
fn mul2(&mut self) -> bool {
#[cfg(all(target_arch = "x86_64", feature = "asm"))]
#[allow(unsafe_code)]
{
let mut carry = 0;
for i in 0..N {
unsafe {
use core::arch::x86_64::_addcarry_u64;
carry = _addcarry_u64(carry, self.0[i], self.0[i], &mut self.0[i])
};
}
carry != 0
}
#[cfg(not(all(target_arch = "x86_64", feature = "asm")))]
{
let mut last = 0;
for i in 0..N {
let a = &mut self.0[i];
let tmp = *a >> 63;
*a <<= 1;
*a |= last;
last = tmp;
}
last != 0
}
}
#[inline]
fn muln(&mut self, mut n: u32) {
if n >= (64 * N) as u32 {
*self = Self::from(0u64);
return;
}
while n >= 64 {
let mut t = 0;
for i in 0..N {
core::mem::swap(&mut t, &mut self.0[i]);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
#[allow(unused)]
for i in 0..N {
let a = &mut self.0[i];
let t2 = *a >> (64 - n);
*a <<= n;
*a |= t;
t = t2;
}
}
}
#[inline]
fn div2(&mut self) {
let mut t = 0;
for i in 0..N {
let a = &mut self.0[N - i - 1];
let t2 = *a << 63;
*a >>= 1;
*a |= t;
t = t2;
}
}
#[inline]
fn divn(&mut self, mut n: u32) {
if n >= (64 * N) as u32 {
*self = Self::from(0u64);
return;
}
while n >= 64 {
let mut t = 0;
for i in 0..N {
core::mem::swap(&mut t, &mut self.0[N - i - 1]);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
#[allow(unused)]
for i in 0..N {
let a = &mut self.0[N - i - 1];
let t2 = *a << (64 - n);
*a >>= n;
*a |= t;
t = t2;
}
}
}
#[inline]
fn is_odd(&self) -> bool {
self.0[0] & 1 == 1
}
#[inline]
fn is_even(&self) -> bool {
!self.is_odd()
}
#[inline]
fn is_zero(&self) -> bool {
self.0.iter().all(|&e| e == 0)
}
#[inline]
fn num_bits(&self) -> u32 {
let mut ret = N as u32 * 64;
for i in self.0.iter().rev() {
let leading = i.leading_zeros();
ret -= leading;
if leading != 64 {
break;
}
}
ret
}
#[inline]
fn get_bit(&self, i: usize) -> bool {
if i >= 64 * N {
false
} else {
let limb = i / 64;
let bit = i - (64 * limb);
(self.0[limb] & (1 << bit)) != 0
}
}
#[inline]
fn from_bits_be(bits: &[bool]) -> Self {
let mut res = Self::default();
let mut acc: u64 = 0;
let mut bits = bits.to_vec();
bits.reverse();
for (i, bits64) in bits.chunks(64).enumerate() {
for bit in bits64.iter().rev() {
acc <<= 1;
acc += *bit as u64;
}
res.0[i] = acc;
acc = 0;
}
res
}
fn from_bits_le(bits: &[bool]) -> Self {
let mut res = Self::zero();
for (bits64, res_i) in bits.chunks(64).zip(&mut res.0) {
for (i, bit) in bits64.iter().enumerate() {
*res_i |= (*bit as u64) << i;
}
}
res
}
#[inline]
fn to_bytes_be(&self) -> Vec<u8> {
let mut le_bytes = self.to_bytes_le();
le_bytes.reverse();
le_bytes
}
#[inline]
fn to_bytes_le(&self) -> Vec<u8> {
let array_map = self.0.iter().map(|limb| limb.to_le_bytes());
let mut res = Vec::with_capacity(N * 8);
for limb in array_map {
res.extend_from_slice(&limb);
}
res
}
}
impl<const N: usize> UpperHex for BigInt<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{:016X}", BigUint::from(*self))
}
}
impl<const N: usize> Display for BigInt<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{}", BigUint::from(*self))
}
}
impl<const N: usize> Ord for BigInt<N> {
#[inline]
#[cfg_attr(target_arch = "x86_64", unroll_for_loops(12))]
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
use core::cmp::Ordering;
#[cfg(target_arch = "x86_64")]
for i in 0..N {
let a = &self.0[N - i - 1];
let b = &other.0[N - i - 1];
match a.cmp(b) {
Ordering::Equal => {},
order => return order,
};
}
#[cfg(not(target_arch = "x86_64"))]
for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) {
if a < b {
return Ordering::Less;
} else if a > b {
return Ordering::Greater;
}
}
Ordering::Equal
}
}
impl<const N: usize> PartialOrd for BigInt<N> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<const N: usize> Distribution<BigInt<N>> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigInt<N> {
let mut res = [0u64; N];
for item in res.iter_mut() {
*item = rng.gen();
}
BigInt::<N>(res)
}
}
impl<const N: usize> AsMut<[u64]> for BigInt<N> {
#[inline]
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0
}
}
impl<const N: usize> AsRef<[u64]> for BigInt<N> {
#[inline]
fn as_ref(&self) -> &[u64] {
&self.0
}
}
impl<const N: usize> From<u64> for BigInt<N> {
#[inline]
fn from(val: u64) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = val;
repr
}
}
impl<const N: usize> From<u32> for BigInt<N> {
#[inline]
fn from(val: u32) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = u64::from(val);
repr
}
}
impl<const N: usize> From<u16> for BigInt<N> {
#[inline]
fn from(val: u16) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = u64::from(val);
repr
}
}
impl<const N: usize> From<u8> for BigInt<N> {
#[inline]
fn from(val: u8) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = u64::from(val);
repr
}
}
impl<const N: usize> TryFrom<BigUint> for BigInt<N> {
type Error = ();
/// Returns `Err(())` if the bit size of `val` is more than `N * 64`.
#[inline]
fn try_from(val: num_bigint::BigUint) -> Result<BigInt<N>, Self::Error> {
let bytes = val.to_bytes_le();
if bytes.len() > N * 8 {
Err(())
} else {
let mut limbs = [0u64; N];
bytes
.chunks(8)
.into_iter()
.enumerate()
.for_each(|(i, chunk)| {
let mut chunk_padded = [0u8; 8];
chunk_padded[..chunk.len()].copy_from_slice(chunk);
limbs[i] = u64::from_le_bytes(chunk_padded)
});
Ok(Self(limbs))
}
}
}
impl<const N: usize> From<BigInt<N>> for BigUint {
#[inline]
fn from(val: BigInt<N>) -> num_bigint::BigUint {
BigUint::from_bytes_le(&val.to_bytes_le())
}
}
/// Compute the signed modulo operation on a u64 representation, returning the result.
/// If n % modulus > modulus / 2, return modulus - n
/// # Example
/// ```
/// use ark_ff::signed_mod_reduction;
/// let res = signed_mod_reduction(6u64, 8u64);
/// assert_eq!(res, -2i64);
/// ```
pub fn signed_mod_reduction(n: u64, modulus: u64) -> i64 {
let t = (n % modulus) as i64;
if t as u64 >= (modulus / 2) {
t - (modulus as i64)
} else {
t
}
}
pub type BigInteger64 = BigInt<1>;
pub type BigInteger128 = BigInt<2>;
pub type BigInteger256 = BigInt<4>;
pub type BigInteger320 = BigInt<5>;
pub type BigInteger384 = BigInt<6>;
pub type BigInteger448 = BigInt<7>;
pub type BigInteger768 = BigInt<12>;
pub type BigInteger832 = BigInt<13>;
#[cfg(test)]
mod tests;
/// This defines a `BigInteger`, a smart wrapper around a
/// sequence of `u64` limbs, least-significant limb first.
// TODO: get rid of this trait once we can use associated constants in const generics.
pub trait BigInteger:
CanonicalSerialize
+ CanonicalDeserialize
+ Copy
+ Clone
+ Debug
+ Default
+ Display
+ Eq
+ Ord
+ Send
+ Sized
+ Sync
+ 'static
+ UniformRand
+ Zeroize
+ AsMut<[u64]>
+ AsRef<[u64]>
+ From<u64>
+ From<u32>
+ From<u16>
+ From<u8>
+ TryFrom<BigUint, Error = ()>
+ Into<BigUint>
{
/// Number of 64-bit limbs representing `Self`.
const NUM_LIMBS: usize;
/// Add another [`BigInteger`] to `self`. This method stores the result in `self`,
/// and returns a carry bit.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut one, mut x) = (B::from(1u64), B::from(2u64));
/// let carry = x.add_with_carry(&one);
/// assert_eq!(x, B::from(3u64));
/// assert_eq!(carry, false);
///
/// // Edge-Case
/// let mut x = B::from(u64::MAX);
/// let carry = x.add_with_carry(&one);
/// assert_eq!(x, B::from(0u64));
/// assert_eq!(carry, true)
/// ```
fn add_with_carry(&mut self, other: &Self) -> bool;
/// Subtract another [`BigInteger`] from this one. This method stores the result in
/// `self`, and returns a borrow.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut one_sub, two, mut three_sub) = (B::from(1u64), B::from(2u64), B::from(3u64));
/// let borrow = three_sub.sub_with_borrow(&two);
/// assert_eq!(three_sub, one_sub);
/// assert_eq!(borrow, false);
///
/// // Edge-Case
/// let borrow = one_sub.sub_with_borrow(&two);
/// assert_eq!(one_sub, B::from(u64::MAX));
/// assert_eq!(borrow, true);
/// ```
fn sub_with_borrow(&mut self, other: &Self) -> bool;
/// Performs a leftwise bitshift of this number, effectively multiplying
/// it by 2. Overflow is ignored.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let mut two_mul = B::from(2u64);
/// two_mul.mul2();
/// assert_eq!(two_mul, B::from(4u64));
///
/// // Edge-Cases
/// let mut zero = B::from(0u64);
/// zero.mul2();
/// assert_eq!(zero, B::from(0u64));
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[0] = true;
/// let mut mul = B::from_bits_be(&arr);
/// mul.mul2();
/// assert_eq!(mul, B::from(0u64));
/// ```
fn mul2(&mut self) -> bool;
/// Performs a leftwise bitshift of this number by n bits, effectively multiplying
/// it by 2^n. Overflow is ignored.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let mut one_mul = B::from(1u64);
/// one_mul.muln(5);
/// assert_eq!(one_mul, B::from(32u64));
///
/// // Edge-Case
/// let mut zero = B::from(0u64);
/// zero.muln(5);
/// assert_eq!(zero, B::from(0u64));
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[4] = true;
/// let mut mul = B::from_bits_be(&arr);
/// mul.muln(5);
/// assert_eq!(mul, B::from(0u64));
/// ```
fn muln(&mut self, amt: u32);
/// Performs a rightwise bitshift of this number, effectively dividing
/// it by 2.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut two, mut four_div) = (B::from(2u64), B::from(4u64));
/// four_div.div2();
/// assert_eq!(two, four_div);
///
/// // Edge-Case
/// let mut zero = B::from(0u64);
/// zero.div2();
/// assert_eq!(zero, B::from(0u64));
///
/// let mut one = B::from(1u64);
/// one.div2();
/// assert_eq!(one, B::from(0u64));
/// ```
fn div2(&mut self);
/// Performs a rightwise bitshift of this number by some amount.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut one, mut thirty_two_div) = (B::from(1u64), B::from(32u64));
/// thirty_two_div.divn(5);
/// assert_eq!(one, thirty_two_div);
///
/// // Edge-Case
/// let mut arr: [bool; 64] = [false; 64];
/// arr[4] = true;
/// let mut div = B::from_bits_le(&arr);
/// div.divn(5);
/// assert_eq!(div, B::from(0u64));
/// ```
fn divn(&mut self, amt: u32);
/// Returns true iff this number is odd.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut one = B::from(1u64);
/// assert!(one.is_odd());
/// ```
fn is_odd(&self) -> bool;
/// Returns true iff this number is even.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut two = B::from(2u64);
/// assert!(two.is_even());
/// ```
fn is_even(&self) -> bool;
/// Returns true iff this number is zero.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut zero = B::from(0u64);
/// assert!(zero.is_zero());
/// ```
fn is_zero(&self) -> bool;
/// Compute the minimum number of bits needed to encode this number.
/// # Example
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let zero = B::from(0u64);
/// assert_eq!(zero.num_bits(), 0);
/// let one = B::from(1u64);
/// assert_eq!(one.num_bits(), 1);
/// let max = B::from(u64::MAX);
/// assert_eq!(max.num_bits(), 64);
/// let u32_max = B::from(u32::MAX as u64);
/// assert_eq!(u32_max.num_bits(), 32);
/// ```
fn num_bits(&self) -> u32;
/// Compute the `i`-th bit of `self`.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut one = B::from(1u64);
/// assert!(one.get_bit(0));
/// assert!(!one.get_bit(1));
/// ```
fn get_bit(&self, i: usize) -> bool;
/// Returns the big integer representation of a given big endian boolean
/// array.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[63] = true;
/// let mut one = B::from(1u64);
/// assert_eq!(B::from_bits_be(&arr), one);
/// ```
fn from_bits_be(bits: &[bool]) -> Self;
/// Returns the big integer representation of a given little endian boolean
/// array.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[0] = true;
/// let mut one = B::from(1u64);
/// assert_eq!(B::from_bits_le(&arr), one);
/// ```
fn from_bits_le(bits: &[bool]) -> Self;
/// Returns the bit representation in a big endian boolean array,
/// with leading zeroes.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bits_be();
/// let mut vec = vec![false; 64];
/// vec[63] = true;
/// assert_eq!(arr, vec);
/// ```
fn to_bits_be(&self) -> Vec<bool> {
BitIteratorBE::new(self).collect::<Vec<_>>()
}
/// Returns the bit representation in a little endian boolean array,
/// with trailing zeroes.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bits_le();
/// let mut vec = vec![false; 64];
/// vec[0] = true;
/// assert_eq!(arr, vec);
/// ```
fn to_bits_le(&self) -> Vec<bool> {
BitIteratorLE::new(self).collect::<Vec<_>>()
}
/// Returns the byte representation in a big endian byte array,
/// with leading zeros.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bytes_be();
/// let mut vec = vec![0; 8];
/// vec[7] = 1;
/// assert_eq!(arr, vec);
/// ```
fn to_bytes_be(&self) -> Vec<u8>;
/// Returns the byte representation in a little endian byte array,
/// with trailing zeros.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bytes_le();
/// let mut vec = vec![0; 8];
/// vec[0] = 1;
/// assert_eq!(arr, vec);
/// ```
fn to_bytes_le(&self) -> Vec<u8>;
/// Returns the windowed non-adjacent form of `self`, for a window of size `w`.
fn find_wnaf(&self, w: usize) -> Option<Vec<i64>> {
// w > 2 due to definition of wNAF, and w < 64 to make sure that `i64`
// can fit each signed digit
if (2..64).contains(&w) {
let mut res = vec![];
let mut e = *self;
while !e.is_zero() {
let z: i64;
if e.is_odd() {
z = signed_mod_reduction(e.as_ref()[0], 1 << w);
if z >= 0 {
e.sub_with_borrow(&Self::from(z as u64));
} else {
e.add_with_carry(&Self::from((-z) as u64));
}
} else {
z = 0;
}
res.push(z);
e.div2();
}
Some(res)
} else {
None
}
}
}